【題目】如圖1,已知A、O、B三點在同一直線上,射線OD、OE分別平分∠AOC、BOC

(1)求∠DOE的度數(shù);

(2)如圖2,在∠AOD內(nèi)引一條射線OF,使∠COF=,其他不變,設∠DOF=

①求∠AOF的度數(shù)(用含的代數(shù)式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度數(shù).

【答案】(1) ∠DOE=(2) ∠AOF=;(3)

【解析】

(1)根據(jù)角平分線的性質(zhì)解答即可;(2)①根據(jù)互余解答即可;②根據(jù)∠BOD是∠AOF2倍,列方程可得α的值.

(1)∵點A,O,B在同一條直線上,

∴∠AOC+BOC=180°,

∵射線OD和射線OE分別平分∠AOC和∠BOC,

∴∠COD=AOC,COE=BOC,

∴∠COD+COE=AOC+BOC)=90°,

∴∠DOE=90°;

(2)①∵OCOF,

∴∠COF=90°,

∵∠DOF=αo,

∴∠COD=90°-α°,

∵∠AOD=COD,

∴∠AOF=AOD-DOF=90°-α°-α°=(90-2α)°,

②∵∠BOD是∠AOF2倍,

180°-(90-α)°=2(90-2α)°,

α=18°,

即∠DOF=18°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

1B出發(fā)時與A相距______千米.

2B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是______小時.

3B出發(fā)后______小時與A相遇.

4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,______小時與A相遇,相遇點離B的出發(fā)點______千米.在圖中表示出這個相遇點C

5)求出A行走的路程S與時間t的函數(shù)關系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

A種,B種樹木每棵各多少元?

因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下不考慮其他因素,實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點D,連接BI、BD、DC.下列說法中錯誤的一項是( 。
A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI重合
C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間的函數(shù)關系的圖象如圖. 根據(jù)圖象解決下列問題:

(1) 誰先出發(fā)?先出發(fā)多少時間?誰先到達終點?先到多少時間?

(2) 分別求出甲、乙兩人的行駛速度;

(3) 在什么時間段內(nèi),兩人均行駛在途中(不包括起點和終點)?在這一時間段內(nèi),請你根據(jù)下列情形,分別列出關于行駛時間x的方程或不等式(不化簡,也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.

查看答案和解析>>

同步練習冊答案