(2012•海南)如圖,點A、B、O是正方形網(wǎng)格上的三個格點,⊙O的半徑是OA,點P是優(yōu)弧
AmB
上的一點,則tan∠APB的值是(  )
分析:由題意可得:∠AOB=90°,然后由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠APB的度數(shù),又由特殊角的三角函數(shù)值,求得答案.
解答:解:由題意得:∠AOB=90°,
∴∠APB=
1
2
∠AOB=45°,
∴tan∠APB=tan45°=1.
故選A.
點評:此題考查了圓周角定理與特殊角的三角函數(shù)值問題.此題難度不大,注意掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海南)如圖,在△ABC中,∠B與∠C的平分線交于點O,過點O作DE∥BC,分別交AB、AC于點D、E.若AB=5,AC=4,則△ADE的周長是
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海南)如圖,正比例函數(shù)y=k1x與反比例函數(shù)y=
k2
x
的圖象相交于A、B兩點,若點A的坐標為(2,1),則點B的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海南)如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海南)如圖(1),在矩形ABCD中,把∠B、∠D分別翻折,使點B、D恰好落在對角線AC上的點E、F處,折痕分別為CM、AN,
(1)求證:△ADN≌△CBM;
(2)請連接MF、NE,證明四邊形MFNE是平行四邊形;四邊形MFNE是菱形嗎?請說明理由;
(3)點P、Q是矩形的邊CD、AB上的兩點,連接PQ、CQ、MN,如圖(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的長度.

查看答案和解析>>

同步練習(xí)冊答案