【題目】綜合探究題 等腰三角形ABC中,AB=x,BC=y(tǒng),周長(zhǎng)為12.

(1)列出關(guān)于x,y的二元一次方程;

(2)求該方程的所有整數(shù)解.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

(1)分ABAC、BCACABBC三種情況列方程即可求解;(2)分別求出上述三種情況列出的二元一次方程的整數(shù)解即可.

(1)分三種情況考慮:

①若AB=AC=x,則2x+y=12;

②若BC=AC=y(tǒng),則x+2y=12;

③若AB=BC=x=y(tǒng),則x=y(tǒng).

(2)①2xy12可得y12-2x,再由三角形的三邊關(guān)系即可求得方程2xy12的整數(shù)解為,;

x2y12可得x12-2y,再由三角形的三邊關(guān)系即可求得方程x2y12的整數(shù)解為,

x=y,根據(jù)三角形的三邊關(guān)系可得,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCDO,OE⊥AB

1)若∠EOD=20°,求∠AOC的度數(shù);

2)若∠AOC∠BOC=12,求∠EOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常常可以得到一些有用的式子,或可以求出一些不規(guī)則圖形的面積.

(1)如圖1,是將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的方法計(jì)算這個(gè)圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請(qǐng)寫(xiě)出來(lái).

(2)如圖2,是將兩個(gè)邊長(zhǎng)分別為a和b的正方形拼在一起,B、C、G三點(diǎn)在同一直線(xiàn)上,連接BD和BF,若兩正方形的邊長(zhǎng)滿(mǎn)足a+b=10,ab=20,你能求出陰影部分的面積嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,BD是一條對(duì)角線(xiàn),點(diǎn)P在CD上(與點(diǎn)C,D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,過(guò)點(diǎn)Q作QM⊥BD于M,連接AM,PM(如圖1).

(1)判斷AM與PM的數(shù)量關(guān)系與位置關(guān)系并加以證明;

(2)若點(diǎn)P在線(xiàn)段CD的延長(zhǎng)線(xiàn)上,其它條件不變(如圖2),(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線(xiàn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線(xiàn)交BE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF.

(1)試判斷四邊形ADCF的形狀,并證明;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式 ,并把解在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD是邊BC上的中線(xiàn),過(guò)點(diǎn)A作AE∥BC,過(guò)點(diǎn)D作DE∥AB,DE與AC、AE分別交于點(diǎn)O、點(diǎn)E,連接EC.
(1)求證:AD=EC;
(2)當(dāng)∠BAC=90°時(shí),求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長(zhǎng)和是( )cm.

A.4m
B.4n
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上一動(dòng)點(diǎn),連接OB、AB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過(guò)點(diǎn)D作x軸垂線(xiàn),分別交x軸、直線(xiàn)OB于點(diǎn)E、F,點(diǎn)E為垂足,連接CF.
(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng)度;
(2)當(dāng)DE=8時(shí),求線(xiàn)段EF的長(zhǎng);
(3)在點(diǎn)B運(yùn)動(dòng)過(guò)程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案