如圖,直線y=k1x+b與雙曲線y=相交于A(1,2)、B(m,-1)兩點.
(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關(guān)系式;
(3)觀察圖象,請直接寫出不等式k1x+b>的解集.
【答案】分析:(1)將點A(1,2)代入雙曲線y=,求出k2的值,將B(m,-1)代入所得解析式求出m的值,再用待定系數(shù)法求出k1和b的值,可得兩函數(shù)解析式;
(2)根據(jù)反比例函數(shù)的增減性在不同分支上進行研究;
(3)根據(jù)A、B點的橫坐標結(jié)合圖象進行解答.
解答:解:(1)∵雙曲線y=經(jīng)過點A(1,2),
∴k2=2,
∴雙曲線的解析式為:y=
∵點B(m,-1)在雙曲線y=上,
∴m=-2,則B(-2,-1).
由點A(1,2),B(-2,-1)在直線y=k1x+b上,
,
解得,
∴直線的解析式為:y=x+1.

(2)∵在第三象限內(nèi)y隨x的增大而減小,故y2<y1<0,
又∵y3是正數(shù),故y3>0,
∴y2<y1<y3

(3)由圖可知x>1或-2<x<0.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求出交點坐標是解題的關(guān)鍵一步.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、如圖,直線y1=k1x+a與y2=k2x+b的交點坐標為(1,2),則使y1<y2的x的取值范圍為
x<1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,直線y1=k1x+a與y2=k3x+b的交點坐標為(1,2),則使y1<y2的x的取值范圍為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線y=k1x與雙曲線y=
k2x
相交于點P、Q.若點P的坐標為(1,2),則點Q的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•阜寧縣一模)如圖,直線y=k1x-b與雙曲線y=
k2
x
相交于M、N點,其橫坐標分別為1和3,則不等式k1x>
k2
x
-b
的解集是
x<0或-3<x<-1
x<0或-3<x<-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•甘井子區(qū)一模)如圖,直線y=k1x+b與雙曲線y=
k2
x
相交于A(m,2),B(-2,-1)兩點.當x>0時,不等式k1x+b>
k2
x
的解集為
x>1
x>1

查看答案和解析>>

同步練習冊答案