【題目】如圖,△ABC中,點(diǎn)PAC邊上一個(gè)動(dòng)點(diǎn),過P作直線EFBC,交∠ACB的平分線于點(diǎn)E,交∠ACB的外角∠ACD平分線于點(diǎn)F

1)請說明:PEPF

2)當(dāng)點(diǎn)PAC邊上運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?為什么?

【答案】(1)詳見解析;(2)當(dāng)點(diǎn)PAC中點(diǎn)時(shí),四邊形AECF是矩形,理由詳見解析.

【解析】

(1)首先證明∠E=2根據(jù)等角對等邊可得EP=PC,同理可得PF=PC,進(jìn)而得到EP=PF

(2)當(dāng)點(diǎn)PAC中點(diǎn)時(shí),四邊形AECF是矩形,首先根據(jù)對角線互相平分的四邊形是平行四邊形可得四邊形AECF是平行四邊形,再證明∠ECF=90°即可.

(1)∵CE平分BCA,

∴∠1∠2,

EFBC,

∴∠E∠1

∴∠E∠2,

EPPC

同理PFPC,

EPPF;

(2)結(jié)論:當(dāng)點(diǎn)PAC中點(diǎn)時(shí),四邊形AECF是矩形,

理由:PAPCPEPF,

四邊形AECF是平行四邊形,

∵∠1=∠2∠3=∠4,∠1+∠2+∠3+∠4=180°

∴∠2+3=90°

ECF90°,

平行四邊形AECF是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCO的面積為6,,反比例函數(shù)經(jīng)過點(diǎn)A與點(diǎn)C,則k=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是對角線AC的中點(diǎn),點(diǎn)EBC上一點(diǎn),且ABAE,連接EO并延長交AD于點(diǎn)F.過點(diǎn)BAE的垂線,垂足為H,交AC于點(diǎn)G

1)若AH3,HE1,求ABE的面積;

2)若∠ACB45°,求證:DFCG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在寬20米,長32米的矩形土地上,修筑橫向、縱向道路各一條,且它們互相垂直,若縱向道路的寬是橫向道路的寬的2倍,要使剩余土地的面積為504平方米,求橫向道路的寬為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是(  )

A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小強(qiáng)洗漱時(shí)的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強(qiáng)身高166cm,下半身FG=100cm,洗漱時(shí)下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點(diǎn)D,C,G,K在同一直線上).

(1)此時(shí)小強(qiáng)頭部E點(diǎn)與地面DK相距多少?

(2)小強(qiáng)希望他的頭部E恰好在洗漱盆AB的中點(diǎn)O的正上方,他應(yīng)向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:

第一組:2,4;

第二組:6,8,10,12;

第三組:14,16,18,20,22,24

第四組:26,28,30,32,34,36,38,40

……

則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個(gè)數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )

A. (31,63) B. (32,17) C. (33,16) D. (34,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A表示數(shù)字6,點(diǎn)B表示數(shù)字﹣4

1)畫數(shù)軸,并在數(shù)軸上標(biāo)出點(diǎn)A與點(diǎn)B;

2)數(shù)軸上一動(dòng)點(diǎn)C從點(diǎn)A出發(fā),沿?cái)?shù)軸的負(fù)方向以每秒2個(gè)單位長度的速度移動(dòng),經(jīng)過4秒到達(dá)點(diǎn)E,數(shù)軸上另一動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿?cái)?shù)軸的正方向以每秒1個(gè)單位長度的速度移動(dòng),經(jīng)過8秒到達(dá)點(diǎn)F,求出點(diǎn)E與點(diǎn)F所表示的數(shù),并在第(1)題的數(shù)軸上標(biāo)出點(diǎn)E,點(diǎn)F;

3)在第(2)題的條件下,在數(shù)軸上找出點(diǎn)H,使點(diǎn)H到點(diǎn)E距離與點(diǎn)H到點(diǎn)F距離之和為8,請?jiān)跀?shù)軸上直接標(biāo)出點(diǎn)H.(不需寫出求解過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,ABC=90°,AB=12,AD=4,BC=9,點(diǎn)PAB上一動(dòng)點(diǎn).若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊答案