22、如圖,在平面直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3
(1)觀察每次變換前后的三角形的變化規(guī)律,若將△OA3B3變換成△OA4B4,則A4的坐標(biāo)是
(16,3)
,B4的坐標(biāo)是
(32,0)
;
(2)若按第(1)題找到的規(guī)律將△OAB進(jìn)行n次變換,得到△OAnBn,比較每次變換中三角形頂點(diǎn)坐標(biāo)有何變化,找出規(guī)律,推測(cè)An的坐標(biāo)是
(2n,3)
,Bn的坐標(biāo)是
(2n+1,0)

分析:根據(jù)圖形寫出點(diǎn)A系列的坐標(biāo)與點(diǎn)B系列的坐標(biāo),根據(jù)具體數(shù)值找到規(guī)律即可.
解答:解:(1)因?yàn)锳(1,3),A1(2,3),A2(4,3),A3(8,3)…縱坐標(biāo)不變?yōu)?,橫坐標(biāo)都和2有關(guān),為2n,那么A4(16,3);
因?yàn)锽(2,0),B1(4,0),B2(8,0),B3(16,0)…縱坐標(biāo)不變,為0,橫坐標(biāo)都和2有關(guān)為2n+1,那么B的坐標(biāo)為B4(32,0);
(2)由上題規(guī)律可知An的縱坐標(biāo)總為3,橫坐標(biāo)為2n,Bn的縱坐標(biāo)總為0,橫坐標(biāo)為2n+1
點(diǎn)評(píng):依次觀察各點(diǎn)的橫縱坐標(biāo),得到規(guī)律是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案