【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點.
(1)如圖,E、F分別是AB、AC上的點,且BE=AF,求證:△DEF為等腰直角三角形.
(2)若E、F分別為AB,CA延長線上的點,仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?畫出圖形,寫出結(jié)論不證明.
【答案】(1)見解析;(2)見解析
【解析】
(1)先連接AD,構(gòu)造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底邊上的中線,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可證出:△BED≌△AFD,從而得出DE=DF,∠BDE=∠ADF,從而得出∠EDF=90°,即△DEF是等腰直角三角形;
(2)根據(jù)題意畫出圖形,連接AD,構(gòu)造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.
解:(1)連結(jié)AD ,
∵AB=AC ,∠BAC=90° ,D為BC中點 ,
∴AD⊥BC ,BD=AD ,
∴∠B=∠BAD=∠DAC=45°,
又∵BE=AF ,
∴△BDE≌△ADF(SAS),
∴ED=FD ,∠BDE=∠ADF,
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,
∴△DEF為等腰直角三角形.
(2)連結(jié)AD
∵AB=AC ,∠BAC=90° ,D為BC中點 ,
∴AD=BD ,AD⊥BC ,
∴∠DAC=∠ABD=45° ,
∴∠DAF=∠DBE=135°,
又∵AF=BE ,
∴△DAF≌△DBE(SAS),
∴FD=ED ,∠FDA=∠EDB,
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.
∴△DEF為等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是( 。
A. ﹣2<t<0 B. ﹣3<t<0 C. ﹣4<t<﹣2 D. ﹣4<t<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(0,1).
(1)畫出△ABC向右平移3個單位長度所得的△A1B1C1;寫出C1點的坐標;
(2)畫出將△ABC繞點B按逆時針方向旋轉(zhuǎn)90°所得的△A2B2C2;寫出C2點的坐標;
(3)在(2)的條件下求點A所經(jīng)過路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC,∠ACB的平分線相交于點F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長為AB+AC;④BD=CE.( )
A. ③④ B. ①② C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了一次函數(shù)后,某校數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)的經(jīng)驗,對函數(shù)y=-|x|-2的圖象和性質(zhì)進行了探究,下面是該興趣小組的探究過程,請補充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值如表:
x | ... | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ... |
y | ... | -5 | -4 | -3 | n | -3 | -4 | -5 | ... |
①n= ;
②如圖,在所給的平面直角坐標系中,描出以表中各組對應(yīng)值為坐標的點,根據(jù)描出的點畫出該函數(shù)的圖象;
(2)當一2<x≤5時,y的取值范圍是 ;
(3)根據(jù)所畫的圖象,請寫出一條關(guān)于該函數(shù)圖象的性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B在x軸的正半軸上,AO=AB,∠OAB=90°,OB=12,點C、D均在邊OB上,且∠CAD=45°,若△ACO的面積等于△ABO面積的,則點D的坐標為 _______ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣kx﹣2=0.
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)已知方程的一個根為x=+1,求k的值及另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com