【題目】在直角三角形中,,,以為邊作正方形,連接、,,則的長為(

A. B. C. D.

【答案】C

【解析】

延長CB,過點DCB延長線的垂線,交點為F,過點OOM⊥CF,先證明RT△ACB≌RT△BFD,然后分別表示出OM、CM的長度,在RT△OCM中利用勾股定理可得出答案.

延長CB過點DCB延長線的垂線,交點為F,過點OOMCF
則可得OM是梯形ACFD的中位線,
∵∠ABC+FBD=CAB+ABC=90°,
∴∠CAB=FBD,
RTACBRTBFD中,
AB=BD,∠CAB=∠FBD,∠ACB=∠BFD,
RTACBRTBFD,
AC=BF,BC=DF,
設(shè)AC=x,OM=,CM=,
RTOCM,OM2+CM2=OC2,2()2=18,
解得:x=4,即AC的長度為4.
故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某民俗旅游村為接待游客住宿需要,開設(shè)了有張床位的旅館,當每張床位每天收費元時,床位可全部租出.若每張床位每天收費提高元,則相應(yīng)的減少了張床位租出.如果每張床位每天以元為單位提高收費,為使租出的床位少且租金高,那么每張床位每天最合適的收費是(

A. 14 B. 15 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生每天參加戶外活動的情況,隨機抽查了100名學生每天參加戶外活動的時間情況并將抽查結(jié)果繪制成如圖所示的扇形統(tǒng)計圖

請你根據(jù)圖中提供的信息解答下列問題

(1)請直接寫出圖中的值,并求出本次抽查中學生每天參加戶外活動時間的中位數(shù);

(2)求本次抽查中學生每天參加戶外活動的平均時間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售如下:

每人銷售件數(shù)

1800

510

250

210

150

120

人數(shù)

1

1

3

5

3

2

1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù).

2)假設(shè)銷售部負責人把每位營銷員的月銷售額定為320件,你認為是否合理?為什么?如不合理,請你制定一個合理的銷售定額,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題情境)如圖,中,,,我們可以利用相似證明,這個結(jié)論我們稱之為射影定理,試證明這個定理;

(結(jié)論運用)如圖,正方形的邊長為,點是對角線、的交點,點上,過點,垂足為,連接,

(1)試利用射影定理證明;

(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在平面直角坐標系中,每個小正方形的邊長為1,ABC的頂點都在格點上,點A的坐標為(-3,2).請按要求分別完成下列各小題:

(1)把ABC向下平移7個單位,再向右平移7個單位,得到A1B1C1,畫出A1B1C1;

(2)畫出A1B1C1關(guān)于x軸對稱的A2B2C2;

畫出A1B1C1關(guān)于y軸對稱的A3B3C3;

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列條件中,不能判斷△ABC是直角三角形的是(  )

A. abc345 B. A:∠B:∠C345

C. A+B=∠C D. abc12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古代名著《算學啟蒙》中有一題:良馬日行二百四十里.駑馬日行一百五十里.駑馬先行十二日,問良馬幾日追及之,如圖是兩馬行走的路程關(guān)于時間的函數(shù)圖像.

1的函數(shù)解析式為_______.

2)求點的坐標.

3)若兩匹馬先在甲站,再從甲站出發(fā)行往乙站,并停留在乙站,且甲、乙兩站之間的路程為里,請問為何值時,駑馬與良馬相距里?

查看答案和解析>>

同步練習冊答案