【題目】為解決江北學(xué)校學(xué)生上學(xué)過(guò)河難的問(wèn)題,鄉(xiāng)政府決定修建一座橋,建橋過(guò)程中需測(cè)量河的寬度(即兩平行

河岸AB與MN之間的距離).在測(cè)量時(shí),選定河對(duì)岸MN上的點(diǎn)C處為橋的一端,在河岸點(diǎn)A處,測(cè)得∠CAB=30°,

沿河岸AB前行30米后到達(dá)B處,在B處測(cè)得∠CBA=60°,請(qǐng)你根據(jù)以上測(cè)量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù): ≈1.41, ≈1.73,結(jié)果保留整數(shù))

【答案】13

【解析】試題如圖,過(guò)點(diǎn)CCD⊥AB于點(diǎn)D,通過(guò)解直角△ACD和直角△BCD來(lái)求CD的長(zhǎng)度.

解:如圖,過(guò)點(diǎn)CCD⊥AB于點(diǎn)D,

設(shè)CD=x

在直角△ACD中,∠CAD=30°,

∴AD==x

同理,在直角△BCD中,BD==x

∵AB=30米,

∴AD+BD=30米,即x+x=30

解得x=13

答:河的寬度的13米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做和美四邊形,對(duì)角線交點(diǎn)稱為和美四邊形的中心.

1)寫(xiě)出一種你學(xué)過(guò)的和美四邊形_________

2)如圖1,點(diǎn)O是和美四邊形ABCD的中心,E,FG、H分別是邊AB,BCCD,DA的中點(diǎn),連接OE,OF,OG,OH,記四邊形AEOH,BEOFCGOF,DHOG的面積為,用等式表示的數(shù)量關(guān)系(無(wú)需說(shuō)明理由)

3)如圖2,四邊形ABCD是和美四邊形,若AB=3BC=2,CD=4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn)OE⊥AC于點(diǎn)E,若AB=4,BC=8,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) , ,連結(jié)

(1)如圖1,當(dāng)點(diǎn)重合時(shí),求證:四邊形是平行四邊形

(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

(3)如圖3,延長(zhǎng)于點(diǎn),若,且

①求的度數(shù);

②當(dāng)時(shí),求 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC和△ADE中,∠BAC=∠EADABAC,ADAE,連接CD、AE交于點(diǎn)F

1)求證:BECD

2)當(dāng)∠BAC=∠EAD30°,ADAB時(shí)(如圖2),延長(zhǎng)DC、AB交于點(diǎn)G,請(qǐng)直接寫(xiě)出圖中除△ABC、△ADE以外的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)DAC上,點(diǎn)EAB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB110°,∠BOCm°DABC外一點(diǎn),且ADC≌△BOC,連接OD.當(dāng)m_____時(shí),AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點(diǎn)在 x 負(fù)半軸上,直角頂點(diǎn) B y 軸上,點(diǎn) C x 軸上方.

(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點(diǎn) B的坐標(biāo)是(0,1),求點(diǎn) C 的坐標(biāo);

(2)如圖2,過(guò)點(diǎn) C CDy 軸于 D,請(qǐng)直接寫(xiě)出線段OA,OD,CD之間等量關(guān)系;

(3)如圖3,若 x 軸恰好平分BAC,BC x 軸交于點(diǎn) E,過(guò)點(diǎn) C CFx 軸于 F,問(wèn) CF AE 有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)一個(gè)不透明的盒中裝有若干個(gè)除顏色外都相同的紅球與黃球.在這個(gè)口袋中先放入2個(gè)白球,再進(jìn)行摸球試驗(yàn),摸球試驗(yàn)的要求:先攪拌均勻,每次摸出一個(gè)球,記錄顏色后放回盒中,再繼續(xù)摸球,全班一共做了400次這樣的摸球試驗(yàn).如果知道摸出白球的頻數(shù)是40,你能估計(jì)在未放入白球前,袋中原來(lái)共有多少個(gè)小球嗎?

(2)提出問(wèn)題:一個(gè)不透明的盒中裝有若干個(gè)只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?

活動(dòng)操作:先從盒中摸出8個(gè)球,畫(huà)上記號(hào)放回盒中.再進(jìn)行摸球試驗(yàn),摸球試驗(yàn)的要求:先攪拌均勻,每次摸出一個(gè)球,記錄顏色、是否有記號(hào),放回盒中,再繼續(xù)摸球、記錄、放回袋中.

統(tǒng)計(jì)結(jié)果:摸球試驗(yàn)活動(dòng)一共做了50次,統(tǒng)計(jì)結(jié)果如下表:

球的類(lèi)別

無(wú)記號(hào)

有記號(hào)

紅色

黃色

紅色

黃色

摸到的次數(shù)

18

28

2

2

由上述的摸球試驗(yàn)推算:

盒中紅球、黃球各占總球數(shù)的百分比分別是多少?

盒中有紅球多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案