如圖,已知AB是⊙O的一條直徑,延長AB至點C,使AC=3BC,CD與⊙O相切,切點為D,若CD=,則線段BC=   
【答案】分析:如圖,連接DO,首先根據(jù)切線的性質(zhì)可以得到∠ODC=90°,又AC=3BC,O為AB的中點,由此可以得到∠C=30°,接著利用30°的直角所對的直角邊是斜邊的一半和勾股定理即可求解.
解答:解:如圖,連接DO,
∵CD是⊙O切線,
∴OD⊥CD,
∴∠ODC=90°,
而AB是⊙O的一條直徑,AC=3BC,
∴AB=2BC=OC=2OD,
∴∠C=30°,
∴OD=CD,
∵CD=
∴OD=BC=3,
故答案為:3.
點評:本題考查了圓的切線性質(zhì)及解直角三角形的知識.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案