【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結論:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正確的結論的有( )
A.1個
B.2個
C.3個
D.4個
【答案】D
【解析】解:開口向下,則a<0,
與y軸交于正半軸,則c>0,
∵﹣ >0,
∴b>0,
則abc<0,①正確;
∵﹣ =1,
則b=﹣2a,
∵a﹣b+c<0,
∴3a+c<0,②錯誤;
∵b=﹣2a,
∴2a+b=0,④正確;
∴b2﹣4ac>0,
∴b2>4ac,⑤正確,
故選:D.
【考點精析】通過靈活運用二次函數(shù)圖象以及系數(shù)a、b、c的關系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知點E在△ABC內(nèi),∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)當α=60°時(如圖1), ①判斷△ABC的形狀,并說明理由;
②求證:BD= AE;
(2)當α=90°時(如圖2),求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店周年慶,印刷了1000張獎券,其中印有老虎圖案的有10張,每張獎金1000元,印有羊圖案的有50張,每張獎金100元,印有雞圖案的有100張,每張獎金20元,印有兔子圖案的有400張,每張獎金2元,其余印有花朵圖案但無獎金,從中任意抽取一張,請解答下列問題:
(1)獲得1000元獎金的概率是多少?
(2)獲得獎金的概率是多少?
(3)若要使獲得2元獎金的概率為,則需要將多少張印有花朵圖案的獎券換為印有兔子圖案的獎券?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過x軸正半軸上的任意一點P作y軸的平行線交反比例函數(shù)y=(x>0)和y=-(x>0)的圖象于A,B兩點,C是y軸上任意一點,則△ABC的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標為(0,1),且過點(﹣1, ),直線y=kx+2與y軸相交于點P,與二次函數(shù)圖象交于不同的兩點A(x1 , y1),B(x2 , y2). (注:在解題過程中,你也可以閱讀后面的材料)
附:閱讀材料
任何一個一元二次方程的根與系數(shù)的關系為:兩根的和等于一次項系數(shù)與二次項系數(shù)的比的相反數(shù),兩根的積等于常數(shù)項與二次項系數(shù)的比.
即:設一元二次方程ax2+bx+c=0的兩根為x1 , x2 ,
則:x1+x2=﹣ ,x1x2=
能靈活運用這種關系,有時可以使解題更為簡單.
例:不解方程,求方程x2﹣3x=15兩根的和與積.
解:原方程變?yōu)椋簒2﹣3x﹣15=0
∵一元二次方程的根與系數(shù)有關系:x1+x2=﹣ ,x1x2=
∴原方程兩根之和=﹣ =3,兩根之積= =﹣15.
(1)求該二次函數(shù)的解析式.
(2)對(1)中的二次函數(shù),當自變量x取值范圍在﹣1<x<3時,請寫出其函數(shù)值y的取值范圍;(不必說明理由)
(3)求證:在此二次函數(shù)圖象下方的y軸上,必存在定點G,使△ABG的內(nèi)切圓的圓心落在y軸上,并求△GAB面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(2,2),反比例函數(shù)(x>0,k≠0)的圖像經(jīng)過線段BC的中點D.
(1)求k的值;
(2)若點P(x,y)在該反比例函數(shù)的圖像上運動(不與點D重合),過點P作PR⊥y軸于點R,作PQ⊥BC所在直線于點Q,記四邊形CQPR的面積為S,求S關于x的解析式并寫出x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.
(1)作出△ABC以O為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°的△A1B1C1 , (只畫出圖形).
(2)作出△ABC關于原點O成中心對稱的△A2B2C2 , (只畫出圖形),寫出B2和C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上點對應的數(shù)為,點對應的數(shù)為,點為數(shù)軸上一動點.
(1) AB的距離是 .
(2) ①若點到點的距離比到點的距離大1,點對應的數(shù)為 .
②若點其對應的數(shù)為,數(shù)軸上是否存在點,使點到點,點的距離之和為8?若存在,請求出的值;若不存在,請說明理由.
(3)當點以每秒鐘個單位長度從原點向右運動時,點以每秒鐘個單位長度的速度從點向左運動,點以每秒鐘個單位長度的速度從點向右運動,問它們同時出發(fā) 秒鐘時,(直接寫出答案即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com