【題目】已知雙曲線:與拋物線:y=ax2+bx+c交于A(2,3)、B(m,2)、C(﹣3,n)三點.

(1)求雙曲線與拋物線的解析式;

(2)在平面直角坐標(biāo)系中描出點A、點B、點C,并求出△ABC的面積.

【答案】(1)y=,y=﹣x2+x+3;(2)5.

【解析】分析:(1)函數(shù)圖象過某一點時,這點就滿足關(guān)系式,利用待定系數(shù)法分別求出反比例函數(shù)與二次函數(shù)解析式即可;

(2)根據(jù)A,B,C三點的坐標(biāo)可以得出△ADB,△BCE和梯形ADEC的面積,用梯形面積減去兩三角形面積即可得到△ABC的面積.

詳解:(1)把點A2,3)代入得:k=6,

y=,

B(m,2)、C(﹣3,n)分別代入y=得,

m=3,n=﹣2,

A(2,3)、B(3,2)、C(﹣3,﹣2)分別代入y=ax2+bx+c得:

,

解得:

∴拋物線的解析式為:y=x2+x+3;

(2)描點畫圖得:

SABC=S梯形ADEC﹣SADB﹣SBCE,

=(1+6)×5﹣×1×1﹣×6×4,

=﹣12,

=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的媽媽在菜市場買回3斤蘿卜、2斤排骨,準(zhǔn)備做蘿卜排骨湯,下面是爸爸媽媽的對話:

媽媽:上個月蘿卜的單價是/斤,排骨的單價比蘿卜的7倍還多2

爸爸:今天,報紙上說與上個月相比,蘿卜的單價上漲了25%,排骨的單價上漲了20%”

請根據(jù)上面的對話信息回答下列問題:

1)請用含的式子填空:上個月排骨的單價是_________/斤,這個月蘿卜的單價是__________/斤,排骨的單價是______________/斤。

2)列式表示今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?(結(jié)果要求化成最簡)

3)當(dāng)4,求今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線 y=2x+3 與直線 y= 2x 1.

1 )求兩直線與 y 軸交點A,B的坐標(biāo);

2 )求兩直線交點 C 的坐標(biāo);

3 )求 ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答下列問題:

例:當(dāng)a=5,則|a|=|5|=5,故此時a的絕對值是它本身;當(dāng)a=0時,|a|=0,故此時a的絕對值是0;當(dāng)a0時,如a=5,則|a|=|5|=﹣(-5=5,故此時a的絕對值是它的相反數(shù).請仿照圖例中的分類討論,解決下面的問題:

1|4+5|=   ;|3|=   ;

2)如果|x+1|=2,求x的值;

3)若數(shù)軸上表示數(shù)a的點位于﹣35之間,求|a+3|+|a5|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與x軸和y軸交于點A和點B.P是線段AB上一動點(不與A、B重合),過點P分別作PCy軸于點C,PDx軸于點D.設(shè)點P的橫坐標(biāo)為m.

(1)如圖1,求線段AB的長度;

(2)如圖2,當(dāng)時,求點P的坐標(biāo);

(3)如圖3,作直線OP,若直線OP的解析式為,求四邊形OCPD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,點Ax1,y1)與Bx2,y2),如果滿足x1+x20,y1y20,其中x1x2,則稱點A與點B互為反等點.已知:點C3,8)、G(﹣5,8),聯(lián)結(jié)線段CG,如果在線段CG上存在兩點P,Q互為反等點,那么點P的橫坐標(biāo)xP的取值范圍是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型物件快遞公司送貨員每月的工資由底薪加計件工資兩部分組成,計件工資與送貨件數(shù)成正比例.有甲乙兩名送貨員,如果送貨量為x件時,甲的工資是y1(元),乙的工資是y2(元),如圖所示,已知甲的每月底薪是800元,每送一件貨物,甲所得的工資比乙高2

1)根據(jù)圖中信息,分別求出y1y2關(guān)于x的函數(shù)解析式;(不必寫定義域)

2)如果甲、乙兩人平均每天送貨量分別是12件和14件,求兩人的月工資分別是多少元?(一個月為30天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于O點,BE平分∠ABOAOE點,CFBEF點,交BOG點,連接EG、OF.下列四個結(jié)論:①CE=CB;②AE=OE;③OF=CG.其中正確的結(jié)論只有(  )

A. ①②③B. ②③C. ①③D. ①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市交通運(yùn)管部門月份的最新數(shù)據(jù),目前該市市面上的共享單車數(shù)量已達(dá)萬輛,共享單車也逐漸成為高校學(xué)生喜愛的綠色出行方式之一.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.

使用次數(shù)

人數(shù)

1)求這天部分出行學(xué)生使用共享單車次數(shù)的平均數(shù),中位數(shù)和眾數(shù).

2)若該校這天有名學(xué)生出行,估計使用共享單車次數(shù)在次以上(含次)的學(xué)生數(shù).

查看答案和解析>>

同步練習(xí)冊答案