【題目】如果點(diǎn)O為△ABC的外心,∠BOC=70°,那么∠BAC等于_____________
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 不相交的兩條線段是平行線 B. 不相交的兩條直線是平行線
C. 不相交的兩條射線是平行線 D. 在同一平面內(nèi),不相交的兩條直線是平行線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
方法準(zhǔn)備:
我們都知道:如圖1,在四邊形ABCD中,AD∥BC,∠B=90°,若AD=a,BC=b,AB=c,那么四邊形ABCD的面積S=.
如圖2,在四邊形ABCD中,兩條對(duì)角線AC⊥BD,垂足為O,則四邊形ABCD的面積=AC×OD+AC×OB=AC×(OD+OB)=AC×BD.
解決問題:
(1)我們以a、b 為直角邊,c為斜邊作兩個(gè)全等的直角△ABE與△FCD,再拼成如圖3所示的圖形,使B,E,F,C四點(diǎn)在一條直線上(此時(shí)E,F重合),可知△ABE≌△FCD,AE⊥DF. 請(qǐng)你證明:a2+b2=c2.
(2)固定△FCD,再將△ABE沿著BC平移到如圖4所示的位置(此時(shí)B,F重合),請(qǐng)你繼續(xù)證明:a2+b2=c2.
(3)當(dāng)△ABE平移到如圖5的位置,結(jié)論a2+b2=c2還成立嗎?如果成立,請(qǐng)寫出證明過程;如果不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD和BE是△ABC的兩條高,∠BCD=45°,BF=FC,BE與DF、DC分別交于點(diǎn)G、H,∠ACD=∠CBE.
(1)判斷△ABC的形狀并說明理由;
(2)小明說:BH的長是AE的2倍.你認(rèn)為正確嗎?請(qǐng)說明理由.
(3)若BG=n2+1,GE=n2﹣1,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從n邊形的一個(gè)頂點(diǎn)作對(duì)角線,把這個(gè)n邊形分成三角形的個(gè)數(shù)是( )
A.n個(gè) B.(n-1)個(gè) C.(n-2)個(gè) D.(n-3)個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D點(diǎn)在BC上,現(xiàn)有下列四個(gè)命題:
①若AB=AC,則∠B=∠C;
②若AB=AC,∠1=∠2,則AD⊥BC,BD=DC;
③若AB=AC,BD=CD,則AD⊥BC,∠1=∠2;
④若AB=AC,AD⊥BC,則BD=BC,∠1=∠2.
其中正確的有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P是⊙O外一點(diǎn),PO交⊙O于點(diǎn)C,OC=CP=2,弦AB⊥OC,∠AOC的度數(shù)為60°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com