【題目】如圖所示,小明在紙上畫折線,他每次都是按水平方向畫,再按豎直方向畫,且每次畫完后的兩條線段的長度相等,如果第次畫的兩條線段的長度都是,第次畫的兩條線段的長度都為,...,第次畫的兩條線段長度都是,請你回答下列問題,說明理由.

(1)畫完第次后,小明所畫的折線的總長度是多少?

(2)畫完第次后,小明所畫的折線的總長度是多少(用含的代數(shù)式表示)?

(3)當小明所畫的折線總長度為時,試求折線的最后兩條線段的長度和.

【答案】1)小明所畫的折線的總長度是;(2)小明所畫的折線的總長度是;(3)折線的最后兩條線段的長度和是63

【解析】

1)由畫的是13、57,9,由于每次畫2條,且這條線段長度相等,再乘2就是總長度,畫完第5次后折線的總長度就是

21、35、7……前n項和是,從而可得答案.

3)令,從而求出n的值,根據(jù)1、3、57……這個規(guī)律發(fā)現(xiàn)第n次畫的線段長度是2n-1,兩條再乘2即可.

解:(1

2,(分子為相加)

,

3)令

則:

所以:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項測試:筆試、面試、實習.學(xué)生的最終成績由筆試面試、實習依次按325的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對他們的兩項成績分別進行了整理和分析.下面給出了部分信息:

①公司將筆試成績(百分制)分成了四組,分別為A組:60≤x70,B組:70≤x80,C組:80≤x90,D組:90≤x100;并繪制了如下的筆試成績頻數(shù)分布直方圖.其中,C組的分數(shù)由低到高依次為:80,81,8283,83,8484,85,86,888888,89

②這些大學(xué)生的筆試、面試成績的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:

平均數(shù)

中位數(shù)

眾數(shù)

最高分

筆試成績

81

m

92

97

面試成績

80.5

84

86

92

根據(jù)以上信息,回答下列問題:

1)這批大學(xué)生中筆試成績不低于88分的人數(shù)所占百分比為   

2m   分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績都是83分,那么該同學(xué)成績排名靠前的是   成績,理由是   

3)乙同學(xué)也參加了本次招聘,筆試成績雖不是最高分,但也不錯,分數(shù)在D組;面試成績?yōu)?/span>88分,實習成績?yōu)?/span>80分由表格中的統(tǒng)計數(shù)據(jù)可知乙同學(xué)的筆試成績?yōu)?/span>   分;若該公司最終錄用的最低分數(shù)線為86分,請通過計算說明,該同學(xué)最終能否被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+7a+1與直線y=2x2a+4同時經(jīng)過點P,點Q是以M0,﹣1)為圓心,MO為半徑的圓上的一個動點,則線段PQ的最小值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),二次函數(shù)的圖象與軸、直線的交點分別為點、

圖(1 圖(2 (備用圖)

1_________,_________,=_________

2)連接AB,點是拋物線上一點(異于點A),且,求點的坐標;

3)如圖(2),點是線段上的動點,且.設(shè)點的橫坐標為

①過點、分別作軸的垂線,與拋物線相交于點、,連接.當取得最大值時,求的值并判斷四邊形的形狀;

②連接、,求為何值時,取得最小值,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB的直徑,為圓弧上的一點,,垂足為DAC平分,AB的延長線交直線于點

1)求證:的切線;

2)若B的中點,,垂足為點,求的長;

3)如圖2,連接OD于點,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,EF是長為8的弦,OGEF于點G,點AGO的延長線上,且AO=13.弦EF從圖1的位置開始繞點O逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中始終保持OGEF,如圖2.

[發(fā)現(xiàn)]在旋轉(zhuǎn)過程中,

(1)AG的最小值是   ,最大值是   

(2)當EFAO時,旋轉(zhuǎn)角α=   

[探究]EF繞點O逆時針旋轉(zhuǎn)120°,如圖3,求AG的長.

[拓展]如圖4,當AE切⊙O于點E,AGEO于點C,GHAEH.

(1)求AE的長.

(2)此時EH=   ,EC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)對一種設(shè)備進行升級改造,并在一定時間內(nèi)進行生產(chǎn)營銷,設(shè)改造設(shè)備的臺數(shù)為x,現(xiàn)有甲、乙兩種改造方案.

甲方案:升級后每臺設(shè)備的生產(chǎn)營銷利潤為4000元,但改造支出費用由材料費和施工費以及其他費用三部分組成,其中材料費與x的平方成正比,施工費與x成正比,其他費用為2500元,(利潤=生產(chǎn)營銷利潤-改造支出費用).設(shè)甲方案的利潤為(元),經(jīng)過統(tǒng)計,得到如下數(shù)據(jù):

改造設(shè)備臺數(shù)x(臺)

20

40

利潤(元)

9500

5500

乙方案:升級后每臺設(shè)備的生產(chǎn)營銷利潤為3500元,但改造支出費用x之間滿足函數(shù)關(guān)系式:a為常數(shù),),且在使用過程中一共還需支出維護費用,(利潤=生產(chǎn)營銷利潤-改造支出費用-維護費用).設(shè)乙方案的利潤為(元).

1)分別求出,x的函數(shù)關(guān)系式;

2)若,的最大值相等,求a的值;

3)如果要將30臺設(shè)備升級改造,請你幫助決策,該企業(yè)應(yīng)選哪種方案,所獲得的利潤較大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點ECD的中點,將BCE沿BE折疊后得到BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠ABC45°AB4,BC9,直線MN平分平行四邊形ABCD的面積,分別交邊AD、BC于點M、N,若BMN是以MN為腰的等腰三角形,則BN_____

查看答案和解析>>

同步練習冊答案