如圖所示,△ABC,△ADE為等腰直角三角形,∠ACB=∠AED=90°.
(1)如圖1,點(diǎn)E在AB上,點(diǎn)D與C重合,F(xiàn)為線段BD的中點(diǎn).則線段EF與FC的數(shù)量關(guān)系是______;∠EFD的度數(shù)為______;
(2)如圖2,在圖1的基礎(chǔ)上,將△ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)到如圖2的位置,其中D、A、C在一條直線上,F(xiàn)為線段BD的中點(diǎn).則線段EF與FC是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?證明你的結(jié)論;
(3)若△ADE繞A點(diǎn)任意旋轉(zhuǎn)一個(gè)角度到如圖③的位置,F(xiàn)為線段BD的中點(diǎn),連接EF、FC,請(qǐng)你完成圖3,并直接寫出線段EF與FC的關(guān)系(無需證明).

【答案】分析:(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.
(2)延長(zhǎng)線段CF到M,使CF=FM,連接DM、ME、EC,易證△BFC≌△DFM,進(jìn)而可以證明△MDE≌△CAE,即可證明EF=FC,EF⊥FC;
(3)基本方法同(2).
解答:解:(1)EF=FC,90°.

(2)延長(zhǎng)CF到M,使CF=FM,連接DM、ME、EC
∵FC=FM,∠BFC=∠DFM,DF=FB,
∴△BFC≌△DFM,
∴DM=BC,∠MDB=∠FBC,
∴MD=AC,MD∥BC,
∵ED=EA,∠MDE=∠EAC=135°,
∴△MDE≌△CAE,
∴ME=EC,∠DEM=∠CEA,
∴∠MEC=90°,
∴EF=FC,EF⊥FC

(3)EF=FC,EF⊥FC.

點(diǎn)評(píng):延長(zhǎng)過三角形的中線構(gòu)造全等三角形是常用的輔助線方法,證明線段相等的問題可以轉(zhuǎn)化為證明三角形全等的問題解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖所示,△ABC和△ADE都是等邊三角形,且B、A、E在同一直線上,連接BD交AC于M,連接CE交AD于N,連接MN.
求證:(1)BD=CE;(2)BM=CN;(3)MN∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖所示,△ABC沿著直尺PQ平移到△A′B′C′,則:
(1)對(duì)應(yīng)點(diǎn):
點(diǎn)A與點(diǎn)A′,點(diǎn)B與點(diǎn)B′,點(diǎn)C與點(diǎn)C′是對(duì)應(yīng)點(diǎn).

(2)對(duì)應(yīng)線段:
AB與A′B′,BC與B′C′,CA與C′A′是對(duì)應(yīng)線段

(3)對(duì)應(yīng)角:
∠A與∠A′,∠B與∠B′,∠C與∠C′是對(duì)應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、已知如圖所示,△ABC與△A′B′C′關(guān)于原點(diǎn)O對(duì)稱,點(diǎn)A(-2,3),B(-4,2),C′(1,-1),則A′點(diǎn)的坐標(biāo)為
(2,-3)
,B′點(diǎn)的坐標(biāo)為
(4,-2)
,C點(diǎn)的坐標(biāo)為
(-1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC的周長(zhǎng)為12,它的內(nèi)切圓⊙O的半徑為1,若向△ABC的內(nèi)部隨機(jī)地拋擲黃豆,則黃豆落入圓內(nèi)的概率是
π
6
π
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖所示,△ABC和△ABC外的一點(diǎn)A′,把△ABC平移,使A與A′重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案