【題目】如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,在矩形ABCD中,AB=2cm,BC=6cm,點C和點M重合,點B,C(M),N在同一直線上若Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為ycm2,則y與x的大致圖象是( )
A. B.
C. D.
【答案】D
【解析】
在Rt△PMN中解題,要充分運用好垂直關系和45度角,因為此題也是點的移動問題,可知矩形ABCD以每秒1cm的速度由開始向右移動到停止,和Rt△PMN重疊部分的形狀可分為下列三種情況,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根據重疊圖形確定面積的求法,作出判斷即可.
∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由題意得:CM=x,
分三種情況:
①當0≤x≤2時,如圖1,邊CD與PM交于點E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此時矩形ABCD與△PMN重疊部分是△EMC,
∴y=S△EMC=CMCE=x2;
故選項A和B不正確;
②如圖2,當D在邊PN上時,過P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此時x=4,
當2<x≤4時,如圖3,矩形ABCD與△PMN重疊部分是四邊形EMCD,
過E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD=CD(DE+CM)=×2×(x﹣2+x)=2x﹣2;
③當4<x≤6時,如圖4,矩形ABCD與△PMN重疊部分是五邊形EMCGF,過E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG=CD(DE+CM)﹣DG2=×2×(x﹣2+x)﹣(x﹣4)2=﹣x2+6x﹣10,
故選項D正確;
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,1),B(0,﹣2),C(1,0),點P(0,2)繞點A旋轉180°得到點P1,點P1繞點B旋轉180°得到點P2,點P2繞點C旋轉180°得到點P3,點P3繞點A旋轉180°得到點P4,…,按此作法進行下去,則點P2019的坐標為( )
A.(-2,0)B.C.(2,-4)D.(-2,-2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年“五一”假期,某數學活動小組組織一次登山活動.他們從山腳下A點出發(fā)沿斜坡AB到達B點,再從B點沿斜坡BC到達山頂C點,路線如圖所示.斜坡AB的長為1000米,斜坡BC的長為200米,在C點測得B點的俯角為45°,已知A點海拔21米,C點海拔721米.
(1)求B點的海拔;
(2)求斜坡AB的坡角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中的正方形ABCD邊長為4,正方形ABCD的中心為原點O.現做如下實驗:拋擲一枚均勻的正方體的骰子(六個面分別標有1至6這六個點數中的一個),每個面朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數作為直角坐標系中點P的坐標(第次的點數作為橫坐標,第二次的點數作為縱坐標)
(1)求點P落在正方形ABCD面上(含正方形內部和邊界)的概率;
(2)試將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,請指出平移方式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優(yōu)秀、良好、及格、不及格四個等級,統(tǒng)計員在將測試數據繪制成圖表時發(fā)現,優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如圖圖表,請按正確數據解答下列各題:
學生體能測試成績各等次人數統(tǒng)計表
體能等級 | 調整前人數 | 調整后人數 |
優(yōu)秀 | 8 |
|
良好 | 16 |
|
及格 | 12 |
|
不及格 | 4 |
|
合計 | 40 |
|
(1)填寫統(tǒng)計表;
(2)根據調整后數據,補全條形統(tǒng)計圖;
(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一種折疊式晾衣架.晾衣時,該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OC=OD=10分米,展開角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.當∠AOC=90°時,點A離地面的距離AM為_______分米;當OB從水平狀態(tài)旋轉到OB′(在CO延長線上)時,點E繞點F隨之旋轉至OB′上的點E′處,則B′E′﹣BE為_________分米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ACB中,∠ACB=90°,在AB的同側分別作正△ACD、正△ABE和正△BCF. 若四邊形CDEF的周長是24,面積是17,則AB的長是_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com