【題目】如圖,,是上的一點,,點為上的一動點,點為上的一動點,則的最小值為 ________,當(dāng)的值取最小值時,則的面積為________.
【答案】2
【解析】
作D點關(guān)于AO的對稱點D’,當(dāng)C,P,D’在同一直線上時,取最小值,則CD’=,故當(dāng)CD’⊥OD’時,CD’最小,根據(jù)得到∠BOD’=60°,根據(jù)OC=4,利用三角函數(shù)即可求出此時的CD’;作PH⊥BO,根據(jù)角平分線的性質(zhì)得到DP’=PH,根據(jù)Rt△OPD’求出D’P,再根據(jù)三角形的面積公式即可求出的面積.
作D點關(guān)于AO的對稱點D’,當(dāng)C,P,D’在同一直線上時,取最小值,
故當(dāng)CD’⊥OD’時,CD’最小,
如圖,∵
∴∠BOD’=60°,
∵OC=4,
∴CD’=OCsin60°=4×=2,
故的最小值為2;
過PH⊥OC,
∵OP平分∠COD’
∴PH=D’P
∵OD’=OCcos60°=4×=2,
∴DP’=OD’tan30°=2×=
故PH=
∴此時S△OPC=OC×PH=×4×=
故答案為:2;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個小正方形邊長都是1.
(1)按要求作圖: △ABC關(guān)于軸對稱的圖形△;
(2)將點先向上平移個單位,再向右平移個單位得到點的坐標(biāo)為 ;
(3)△的面積為 ;
(4)若為軸上一點,連接 ,則△周長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+k+1的圖象與一次函數(shù)y=﹣x+4的圖象交于點A(1,a).
(1)求a、k的值;
(2)根據(jù)圖象,寫出不等式﹣x+4>kx+k+1的解;
(3)結(jié)合圖形,當(dāng)x>2時,求一次函數(shù)y=﹣x+4函數(shù)值y的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:兩個二次項系數(shù)之和為1,對稱軸相同,且圖象與y軸交點也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為.
請你分別寫出,的友好同軸二次函數(shù);
滿足什么條件的二次函數(shù)沒有友好同軸二次函數(shù)?滿足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?
如圖,二次函數(shù):與其友好同軸二次函數(shù)都與y軸交于點A,點B、C分別在、上,點B,C的橫坐標(biāo)均為,它們關(guān)于的對稱軸的對稱點分別為,,連結(jié),,,CB.
若,且四邊形為正方形,求m的值;
若,且四邊形的鄰邊之比為1:2,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,在L1上任取一點P,過點P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點M,N(點M在點N的左側(cè)).
(1)當(dāng)L1與L2重合時,求點P的坐標(biāo);
(2)當(dāng)點P與點B重合時,求此時L2的解析式;并直接寫出L1與L2中,y均隨x的增大而減小時的x的取值范圍;
(3)連接PM,PB,設(shè)點P(m,n),當(dāng)n= m時,求△PMB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:我們可以將任意三位數(shù)記為,(其中、、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字,且),顯然.
材料二:若一個三位數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字均不為0,則稱之為初始數(shù),比如123就是一個初始數(shù),將初始數(shù)的三個數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個新的初始數(shù),比如由123可以產(chǎn)生出132,213,231,312,321這5個新初始數(shù),這6個初始數(shù)的和成為終止數(shù).
(1)求初始數(shù)125生成的終止數(shù);
(2)若一個初始數(shù),滿足,且,記,,,若,求滿足條件的初始數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問題時,經(jīng)歷了如下過程:
求解體驗
(1)已知拋物線經(jīng)過點(-1,0),則= ,頂點坐標(biāo)為 ,該拋物線關(guān)于點(0,1)成中心對稱的拋物線的表達(dá)式是 .
抽象感悟
我們定義:對于拋物線,以軸上的點為中心,作該拋物線關(guān)于
點對稱的拋物線 ,則我們又稱拋物線為拋物線的“衍生拋物線”,點為“衍生中心”.
(2)已知拋物線關(guān)于點的衍生拋物線為,若這兩條拋物線有交點,求的取值范圍.
問題解決
(3) 已知拋物線
①若拋物線的衍生拋物線為,兩拋物線有兩個交點,且恰好是它們的頂點,求的值及衍生中心的坐標(biāo);
②若拋物線關(guān)于點的衍生拋物線為 ,其頂點為;關(guān)于點的衍生拋物線為,其頂點為;…;關(guān)于點的衍生拋物線為,其頂點為;…(為
正整數(shù)).求的長(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對風(fēng)電塔桿進(jìn)行了測量,甲同學(xué)站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com