如圖,一條拋物線)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).若點(diǎn)M、N的坐標(biāo)分別為(0,—2)、(4,0),拋物線與直線MN始終有交點(diǎn),線段AB的長(zhǎng)度的最小值為   

試題分析:由題意得,當(dāng)拋物線的頂點(diǎn)為點(diǎn)M(0,—2)時(shí),線段AB的長(zhǎng)度的最小
,所以拋物線的解析式為
當(dāng)時(shí),,解得
所以線段AB的長(zhǎng)度的最小值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3).

(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請(qǐng)求出出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元售出,那么每月可售出500個(gè),根據(jù)銷售經(jīng)驗(yàn),銷售單價(jià)每提高1元,銷售量相應(yīng)減少10個(gè).
(1)設(shè)銷售單價(jià)提高x元(x為正整數(shù)),寫出每月銷售量y(個(gè))與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤(rùn)為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當(dāng)銷售單價(jià)定為多少元時(shí),每月銷售這種籃球的利潤(rùn)最大,最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線(a≠0)的對(duì)稱軸是直線l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:
x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若經(jīng)過點(diǎn)T(0,t)作垂直于y軸的直線l′,A為直線l′上的動(dòng)點(diǎn),線段AM的垂直平分線交直線l于點(diǎn)B,點(diǎn)B關(guān)于直線AM的對(duì)稱點(diǎn)為P,記P(x,y2).
①求y2與x之間的函數(shù)關(guān)系式;
②當(dāng)x取任意實(shí)數(shù)時(shí),若對(duì)于同一個(gè)x,有y1<y2恒成立,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,拋物線)與軸的兩個(gè)交點(diǎn)分別為,當(dāng)時(shí),的取值范圍是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
 
給出了結(jié)論:
(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
(2)當(dāng)時(shí),y<0;
(3)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個(gè)數(shù)是(  )
A.3 B.2 C.1 D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若二次函數(shù)的圖象經(jīng)過點(diǎn)P(-2,4),則該圖象必經(jīng)過點(diǎn)
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在同一坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+8x+b的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)二次函數(shù)取最小值時(shí),的值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案