【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD.
(1)P是 上一點(diǎn)(不與C、D重合),求證:∠CPD=∠COB;
(2)點(diǎn)P′在劣弧CD上(不與C、D重合)時(shí),∠CP′D與∠COB有什么數(shù)量關(guān)系?請證明你的結(jié)論.

【答案】
(1)證明:連接OD,

∵AB是直徑,AB⊥CD,

∴∠COB=∠DOB= ∠COD.

又∵∠CPD= ∠COD,

∴∠CPD=∠COB


(2)解:∠CP′D+∠COB=180°.

理由如下:連接OD,

∵∠CPD+∠CP′D=180°,∠COB=∠DOB= ∠COD,

又∵∠CPD= ∠COD,

∴∠COB=∠CPD,

∴∠CP′D+∠COB=180°.


【解析】(1)根據(jù)垂徑定理知,弧CD=2弧BC,由圓周角定理知,弧BC的度數(shù)等于∠BOC的度數(shù),弧AD的度數(shù)等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根據(jù)圓內(nèi)接四邊形的對角互補(bǔ)知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓心角、弧、弦的關(guān)系的相關(guān)知識,掌握在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線對稱軸與x軸相交于點(diǎn)M,

(1)求△ABC的面積;
(2)若p是x軸上方的拋物線上的一個(gè)動點(diǎn),求點(diǎn)P到直線BC的距離的最大值;
(3)若點(diǎn)P在拋物線上運(yùn)動(點(diǎn)P異于點(diǎn)A),當(dāng)∠PCB=∠BCA時(shí),求直線PC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2,B﹣3,﹣2

1若點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,則點(diǎn)D的坐標(biāo)為

2將點(diǎn)B先向右平移5個(gè)單位再向上平移1個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為

3A,B,C,D組成的四邊形ABCD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去離家2.4 km的體育館看球賽,進(jìn)場時(shí),發(fā)現(xiàn)門票還放在家中,此時(shí)離比賽還有45 min,于是他立即步行(勻速)回家取票,在家取票用時(shí)2 min,取到票后,他馬上騎自行車(勻速)趕往體育館.已知小明騎自行車從家趕往體育館比從體育館步行回家所用時(shí)間少20 min,騎自行車的速度是步行速度的3倍.

(1)小明步行的速度是多少?

(2)小明能否在球賽開始前趕到體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件個(gè)數(shù):

每人加工零件個(gè)數(shù)

540

450

300

240

210

120

人數(shù)

1

1

2

6

3

2

(1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).

(2)假如生產(chǎn)部負(fù)責(zé)人把每位工人的月加工零件個(gè)數(shù)定為260,你認(rèn)為這個(gè)定額是否合理?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,將一個(gè)直角三角板的直角頂點(diǎn)與點(diǎn)A重合,一條直角邊與邊BC交于點(diǎn)E(點(diǎn)E不與點(diǎn)B和點(diǎn)C重合),另一條直角邊與邊CD的延長線交于點(diǎn)F.
(1)如圖①,求證:AE=AF;
(2)如圖②,此直角三角板有一個(gè)角是45°,它的斜邊MN與邊CD交于G,且點(diǎn)G是斜邊MN的中點(diǎn),連接EG,求證:EG=BE+DG;
(3)在(2)的條件下,如果 = ,那么點(diǎn)G是否一定是邊CD的中點(diǎn)?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人以相同路線前往離學(xué)校12千米的地方參加植樹活動.分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時(shí)間t(分鐘)變化的函數(shù)圖象,解決下列問題:

(1)求出甲、乙兩人所行駛的路程S、St之間的關(guān)系式;

(2)甲行駛10分鐘后,甲、乙兩人相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙,丙三種作物,分別在山腳,山腰和山頂三個(gè)試驗(yàn)田進(jìn)行試驗(yàn),每個(gè)試驗(yàn)田播種二十粒種子,農(nóng)業(yè)專家將每個(gè)試驗(yàn)田成活的種子個(gè)數(shù)統(tǒng)計(jì)如條形統(tǒng)計(jì)圖,如圖所示,下面有四個(gè)推斷: ①甲種作物受環(huán)境影響最小;
②乙種作物平均成活率最高;
③丙種作物最適合播種在山腰;
④如果每種作物只能在一個(gè)地方播種,那么山腳,山腰和山頂分別播種甲,乙,丙三種作物能使得成活率最高.
其中合理的是(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊答案