【題目】如圖,Rt△ABC的斜邊AB與量角器的直徑恰好重合,B點與0刻度線的一端重合,∠ABC=40°,射線CD繞點C轉動,與量角器外沿交于點D,若射線CD將△ABC分割出以BC為邊的等腰三角形,則點D在量角器上對應的度數(shù)是(

A.40°
B.70°
C.70°或80°
D.80°或140°

【答案】D
【解析】解:如圖,點O是AB中點,連接DO.∵點D在量角器上對應的度數(shù)=∠DOB=2∠BCD,
∵當射線CD將△ABC分割出以BC為邊的等腰三角形時,
∠BCD=40°或70°,
∴點D在量角器上對應的度數(shù)=∠DOB=2∠BCD=80°或140°,
故選D.

【考點精析】本題主要考查了角的運算的相關知識點,需要掌握角之間可以進行加減運算;一個角可以用其他角的和或差來表示才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=x2﹣4x+3與x軸交于點A、B(點A在點B的左側),與y軸交于點C.
(1)求直線BC的表達式;
(2)垂直于y軸的直線l與拋物線交于點P(x1 , y1),Q(x2 , y2),與直線BC交于點N(x3 , y3),若x1<x2<x3 , 結合函數(shù)的圖象,求x1+x2+x3的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坐標平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A、B兩點,與y軸交于C點,其頂點為D,且k>0.若△ABC與△ABD的面積比為1:4,則k值為何?(

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,將△ABC繞點A順時針旋轉40°后,得到△AB′C′,且C′在邊BC上,則∠AC′C的度數(shù)為(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x﹣5與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.

(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標有數(shù)字2,3,4,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(﹣2,0),(x1 , 0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方.下列結論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正確結論有 . (填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,△ACM、△CBN是等邊三角形,直線AN、MC交于點E,直線BM、CN交于點F.

(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉90°,其它條件不變,在圖②中補出符合要求的圖形,并判斷(1)題中的結論是否依然成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑的⊙O是△ADC的外接圓,過點O作PO⊥AB,交AC于點E,PC的延長線交AB的延長線于點F,∠PEC=∠PCE.
(1)求證:FC為⊙O的切線;
(2)若△ADC是邊長為a的等邊三角形,求AB的長.(用含a的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案