【題目】如圖,P,Q分別是雙曲線在第一、三象限上的點(diǎn),PA⊥軸,QB⊥軸,垂足分別為A,B,點(diǎn)C是PQ與軸的交點(diǎn).設(shè)△PAB的面積為,△QAB的面積為,△QAC的面積為,則有( )

A. B. C. D.

【答案】D

【解析】試題分析:如圖,延長(zhǎng)PA、QB交于點(diǎn)M,則QMB是直角三角形,,可得AM=OB,BM=OA,根據(jù)反比例函數(shù)k的幾何意義可得OB·BQ=OA·AP=k,所以AM·BQ=BM·AP,,即可得,由相似三角形的判定定理可得ABM∽△PQM,根據(jù)相似三角形的性質(zhì)可得BAM=QPM,所以ABPQ,即可得四邊形ABQC是平行四邊形,所以QAB的面積等于QAC的面積,即=,因ABPQ,根據(jù)同底等高的兩個(gè)三角形的面積相等可得設(shè)PAB的面積等于QAB的面積,即=,所以,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(  )

A.aa1aB.2a36a3C.a6÷a2a3D.2a2a2a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a﹣3b=﹣3,那么代數(shù)式5﹣a+3b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為更好地開展傳統(tǒng)文化進(jìn)校園活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.

最喜愛的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表

根據(jù)以上信息完成下列問題:

(1)直接寫出頻數(shù)分布表中a的值;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛圍棋的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了倡導(dǎo)節(jié)能低碳的生活,某公司對(duì)集體宿舍用電收費(fèi)作如下規(guī)定:一間宿舍一個(gè)月用電量不超過a千瓦時(shí),則一個(gè)月的電費(fèi)為20元;若超過a千瓦時(shí),則除了交20元外,超過部分每千瓦時(shí)要交元。某宿舍3月份用電80千瓦時(shí),交電費(fèi)35元;4月份用電45千瓦時(shí),交電費(fèi)20元。

(1)求a的值;

(2)若該宿舍5月份交電費(fèi)45元,那么該宿舍當(dāng)月用電量為多少千瓦時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(

A.3a3+ a 3=4 a 6B.( a +b)2= a 2+b2C.5 a5 a =0 D.(a)2·a 3=a 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗媽媽在網(wǎng)上做淘寶生意,專門銷售女式鞋子,一次,小麗發(fā)現(xiàn)一個(gè)進(jìn)貨單上的一個(gè)信息是:A款鞋的進(jìn)價(jià)比B款鞋進(jìn)價(jià)多20元,花500元進(jìn)A款鞋的數(shù)量和花400元進(jìn)B款鞋的數(shù)量相同.

(1)問A、B款鞋的進(jìn)價(jià)分別是多少元?

(2)小麗在銷售單上記錄了兩天的數(shù)據(jù)如表:

日期

A款女鞋銷量

B款女鞋銷量

銷售總額

61

12

8

2240

62

8

10

1960

請(qǐng)問兩種鞋的銷售價(jià)分別是多少?

(3)小麗媽媽說:“兩款鞋的利潤(rùn)率相同”,請(qǐng)通過計(jì)算,結(jié)合(1)(2)所給信息,判斷小麗媽媽的說法是否正確,如果正確,請(qǐng)說明理由;如果錯(cuò)誤,能否只調(diào)整其中一款的售價(jià),使得兩款鞋的利潤(rùn)率相同?能否同時(shí)調(diào)整兩款的售價(jià),使得兩款鞋的利潤(rùn)率相同?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°,∠DAB=45°.求證:AC=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案