【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點(diǎn).已知的弓形高,,.當(dāng)鎖柄繞著點(diǎn)順時(shí)針旋轉(zhuǎn)至位置時(shí),門鎖打開,此時(shí)直線所在的圓相切,且

1)求所在圓的半徑;

2)求線段的長(zhǎng)度.(,結(jié)果精確到

【答案】1)即所在圓的半徑為;(2cm

【解析】

1)連結(jié),設(shè)于點(diǎn),設(shè),在中,根據(jù)勾股定理,列方程,即可求解;

2)延長(zhǎng)的延長(zhǎng)線于點(diǎn),設(shè)直線所在的圓相切于點(diǎn),連結(jié).由,結(jié)合,cm,cm,由,得,,進(jìn)而得,即可求解.

1)如圖,連結(jié),設(shè)于點(diǎn)

BK=AG=,

設(shè)

∴在中,,

解得:,

所在圓的半徑為;

2)如圖,延長(zhǎng)的延長(zhǎng)線于點(diǎn),設(shè)直線所在的圓相切于點(diǎn),連結(jié)

,

,

,

cm

cm,

cm

直線所在的圓相切于點(diǎn),

cm,

,

,

,

cm,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某環(huán)衛(wèi)公司承包了市區(qū)兩個(gè)片區(qū)道路的清掃任務(wù),需要購(gòu)買某廠家A,B兩種型號(hào)的馬路清掃車,購(gòu)買5A型馬路清掃車和6B型馬路清掃車共需171萬(wàn)元;購(gòu)買3A型馬路清掃車和12B型馬路清掃車共需237萬(wàn)元.

1)求這兩種馬路清掃車的單價(jià);

2)恰逢該廠舉行30周年慶,決定對(duì)這兩種馬路清掃車開展促銷活動(dòng),具體方案如下:購(gòu)買A型馬路清掃車按原價(jià)的八折銷售,購(gòu)買B型馬上清掃車不超過(guò)10輛時(shí)按原價(jià)銷售,超過(guò)10輛的部分按原價(jià)的七折銷售.設(shè)購(gòu)買xA種馬路清掃車需要y1元,購(gòu)買xx0)個(gè)B型馬路清掃車需要y2元,分別求出y1,y2關(guān)于x的函數(shù)關(guān)系式;

3)若該公司承包的道路清掃面積為118000m2,每輛A型馬路清掃車每天清掃5000m2,每輛B型馬路清掃車每天清掃6000m2,公司準(zhǔn)備購(gòu)買20輛馬路清掃車,且B型馬路清掃車的數(shù)量大于10.請(qǐng)你幫該公司設(shè)計(jì)出最省錢的購(gòu)買方案.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,其中記載:“今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八。問(wèn)甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問(wèn)甲、乙二人原來(lái)各有多少錢?”

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)A(2,0),B(0,2),C(,0)三點(diǎn),一動(dòng)點(diǎn)P從原點(diǎn)出發(fā)以1個(gè)單位/秒的速度沿x軸正方向運(yùn)動(dòng),連接BP,過(guò)點(diǎn)A作直線BP的垂線交y軸于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)求拋物線的解析式;

(2)當(dāng)BQ=AP時(shí),求t的值;

(3)隨著點(diǎn)P的運(yùn)動(dòng),拋物線上是否存在一點(diǎn)M,使△MPQ為等邊三角形?若存在,請(qǐng)直接寫t的值及相應(yīng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)點(diǎn)A-3,4).

1)求b的值

2過(guò)點(diǎn)A軸的平行線交拋物線于另一點(diǎn)B,在直線AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線OP的對(duì)稱點(diǎn)C;

①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線OP的表達(dá)式;

②連結(jié)BC,求BC的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2bxc的圖象過(guò)點(diǎn)(1,0)和點(diǎn)(3,0),有下列說(shuō)法:①bc0;②abc0;③2ab0;④4acb2.其中錯(cuò)誤的是(  )

A.②④B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,直線DEO相切于點(diǎn)C,過(guò)A,B分別作ADDE,BEDE,垂足為點(diǎn)D,E,連接ACBC,若ADCE3,則的長(zhǎng)為(  )

A.B.πC.πD.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(zhǎng)(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MNAB于點(diǎn)D,交BC于點(diǎn)E.若AC3AB5,則DE等于(

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物的頂部有一塊標(biāo)識(shí)牌 CD,小明在斜坡上 B 處測(cè)得標(biāo)識(shí)牌頂部C 的仰角為 45°, 沿斜坡走下來(lái)在地面 A 處測(cè)得標(biāo)識(shí)牌底部 D 的仰角為 60°,已知斜坡 AB 的坡角為 30°ABAE10 米.則標(biāo)識(shí)牌 CD 的高度是( )米.

A.155B.2010C.105D.55

查看答案和解析>>

同步練習(xí)冊(cè)答案