如圖,Rt△ABC中,A=90,AB=4,AC=3,D在BC上運動(不與B、C重合),過D點分別向AB、Ac作垂線,垂足分別為E、F,則矩形AEDF的面積的最大值為___________。
3
首先設(shè)DE=x.依題意求出△BDE∽△BCA,然后根據(jù)矩形的面積以及二次函數(shù)求最值的方法求解.
解:設(shè)DE=x.
∵DE∥AC,
∴△BDE∽△BCA.
,BE=x,則AE=4-x.
則矩形AEDF的面積是x(4-x)=-x2+4x,根據(jù)二次函數(shù)求最值的方法,知矩形面積的最大值是
=3.
故答案為:3.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(12分)已知矩形ABCD,現(xiàn)將矩形沿對角線BD折疊,得到如圖所示的圖形,

(1)求證:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形中,分別為的中點,則線段       
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題



動手操作:在矩形紙片中,.如圖所示,折疊紙片,使點 落在邊上的處,折痕為.當點邊上移動時,折痕的端點也隨之移動.若限定點分別在邊上移動,則點邊上距B點可移動的最短距離為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖1所示,將矩形紙片先沿虛線AB按箭頭方向向右對折,接著將對折后的紙片沿虛線CD向下對折,然后剪下一個小三角形,再將紙片打開,則打開后的展開圖是

           
A.        B.              C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(9分)如圖所示,在邊長為1的正方形ABCD中,一直角三角尺PQR的直角頂點P在對角線AC上移動,直角邊PQ經(jīng)過點D,另一直角邊與射線BC交于點E.
⑴試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
⑵連接PB,試證明:△PBE為等腰三角形;
⑶設(shè)AP=x,△PBE的面積為y,
①求出y關(guān)于x 函數(shù)關(guān)系式;
②當點P落在AC的何處時,△PBE的面積最大,此時最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在四邊形ABFC中,=90°,的垂直平分線EF交BC于點D,交AB于點E,且CF=AE.
(1)求證:四邊形BECF是菱形;
(2)當的大小為多少度時,四邊形BECF是正方形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,觀察圖中菱形的個數(shù):圖1中有1個菱形,圖2中有5個菱形,圖3中有14個菱形,圖4中有30個菱形……,則第6個圖中菱形的個數(shù)是          個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(12分)如圖12,在△ABC中,AC=BC,∠B=30°,DAC的中點,E是線段BC延長線上一動點,過點AAFBE,與線段ED的延長線交于點F,連結(jié)AE、CF.
(1)求證:AF=CE;
(2)若CE=BC,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論;
(3)若CE= BC,求證:EFAC.

查看答案和解析>>

同步練習冊答案