【題目】如圖,將一段標(biāo)有060均勻刻度的繩子鋪平后折疊(繩子無彈性),使繩子自身的一部分重疊,然后在重疊部分沿繩子垂直方向剪斷,將繩子分為A、B、C三段,若這三段的長度由短到長的比為123,則折痕對應(yīng)的刻度不可能是( 。

A. 20 B. 25 C. 30 D. 35

【答案】C

【解析】可設(shè)折痕對應(yīng)的刻度為xcm,根據(jù)折疊的性質(zhì)和三段長度由短到長的比為1:2:3,長為60cm的卷尺,列出方程求解即可.

解:設(shè)折痕對應(yīng)的刻度為xcm,依題意有

繩子被剪為10cm,20cm,30cm的三段,

①x=+10=20,②x=+10=25,③x=+20=35,

④x=+20=25,⑤x=+30=35,⑥x=+30=40.

綜上所述,折痕對應(yīng)的刻度可能為20、25、35、40.

故選C.

“點(diǎn)睛”本題考查了一元一次方程的應(yīng)用和圖形的簡拼,解題的關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解,注意分類思想的運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,各地采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過6立方米時(shí),水費(fèi)按每立方米a元收費(fèi),超過6立方米時(shí),不超過的部分每立方米仍按a元收費(fèi),超過的部分每立方米按b元收費(fèi),該市小明家今年9、10月份的用水量和所交水費(fèi)如下表所示:

月份

用水量(m3)

收費(fèi)(元)

9

5

7.5

10

9

18

設(shè)小明家每月用水量x(立方米),應(yīng)交水費(fèi)y(元).

⑴則a= ,b=

⑵ 當(dāng)x≤6,x>6時(shí),分別寫出yx的函數(shù)關(guān)系式;

⑶ 若該戶11月份、12月份用水量為14立方米共交水費(fèi)27元(11月份用水小于12月份用水),求該戶11月份水、12月份用水各多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年春節(jié)期間,在網(wǎng)絡(luò)上用“百度”搜索引擎搜索“開放二孩”,能搜索到與之相關(guān)的結(jié)果個(gè)數(shù)約為45100000,這個(gè)數(shù)用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在離水面高度AC為2米的岸上有人用繩子拉船靠岸,開始時(shí)繩子與水面的夾角為30°,此人以每秒05米的速度收繩子

問:1未開始收繩子的時(shí)候,圖中繩子BC的長度是多少米?

2收繩2秒后船離岸邊多少米?結(jié)果保留根號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=-6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動點(diǎn),將ΔCEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是( )

A. 1.6 B. 1.2 C. 1 D. 0.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】升降機(jī)運(yùn)行時(shí),如果下降13米記作“﹣13,那么當(dāng)它上升25米時(shí),記作_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a<b,則下列各式中,錯(cuò)誤的是( 。

A. a﹣3<b﹣3 B. 3﹣a<3﹣b C. ﹣3a>﹣3b D. 3a<3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=﹣x﹣1的圖象的一個(gè)交點(diǎn)為A(﹣2,a).

(1)求反比例函數(shù)的表達(dá)式;

(2)請直接寫出不等式﹣x﹣1的解集;

(3)若一次函數(shù)=﹣x﹣1與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)P是反比例函數(shù)y=圖象上一點(diǎn),且S△BOP=4S△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案