如圖中線段PQ所表示的y與x的函數(shù)關(guān)系式是

[  ]

A.y=2x-2(-1≤x≤0)

B.y=-2x-2(-2≤x≤-1)

C.y=-2x-2(-1≤x≤0)

D.y=-x-2(-1≤x≤0)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•福州)如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•臺江區(qū)模擬)如圖,四邊形OABC為直角梯形,OA=4,BC=3,OC=4. 點M從O 出發(fā)向A運動;點N從B同時出發(fā),向C運動,速度均為每秒1個單位長度.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ、OQ,設(shè)運動時間為t秒.
(1)用含t的代數(shù)式表示PQ的長.
(2)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標,若不存在,說明理由.
(3)設(shè)E、F分別是OQ、PQ的中點,求整個運動過程中,線段EF所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=18cm,BC=6cm,點P沿AB、BC邊從點A→B→C方向以3cm/秒的速度移動,點Q沿DA、AB邊從點D→A→B方向以1cm/秒的速度移動,如果P、Q同時出發(fā),用t(秒)表示運動時間.
(1)若t=1時,求△APQ的面積;
(2)當P在AB邊上移動時,在△APQ中,若滿足∠PQA>45°,求t的范圍;
(3)若0≤t≤8,線段PQ和矩形兩邊所構(gòu)成的三角形與△ABC何時能相似?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進行適當?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習冊答案