精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,點D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.
(1)由題設條件,請寫出三個正確結論:(要求不再添加其他字母和輔助線,找結論過程中添加的字母和輔助線不能出現在結論中,不必證明)
答:結論一:______;
結論二:______;
結論三:______.
(2)若∠B=45°,BC=2,當點D在BC上運動時(點D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時BD的長.
(注意:在第(2)的求解過程中,若有運用(1)中得出的結論,須加以證明)

【答案】分析:(1)由∠B=∠C,根據等腰三角形的性質可得AB=AC;由∠1=∠C,∠AED=∠EDC+∠C得到∠AED=∠ADC;又由∠DAE=∠CAD,根據相似三角形的判定可得到△ADE∽△ACD;
(2)①由∠B=∠C,∠B=45°可得△ACB為等腰直角三角形,則AC=BC=×2=,由∠1=∠C,∠DAE=∠CAD,根據相似三角形的判定可得△ADE∽△ACD,則有AD:AC=AE:AD,即AD2=AE•AC,
AE===•AD2,當AD⊥BC,AD最小,且AD=BC=1,此時AE最小為,利用CE=AC-AE得到CE的最大值;
②討論:當AD=AE時,則∠1=∠AED=45°,得到∠DAE=90°,則點D與B重合,不合題意舍去;當EA=ED時,如圖1,則∠EAD=∠1=45°,所以有AD平分∠BAC,得到AD垂直平分BC,則BD=1;
當DA=DE時,如圖2,由△ADE∽△ACD,易得△CAD為等腰三角形,則DC=CA=,于是有BD=BC-DC=2-
解答:解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD;

(2)①∵∠B=∠C,∠B=45°,
∴△ACB為等腰直角三角形,
∴AC=BC=×2=,
∵∠1=∠C,∠DAE=∠CAD,
∴△ADE∽△ACD,
∴AD:AC=AE:AD,即AD2=AE•AC,
∴AE===•AD2
當AD最小時,AE最小,此時AD⊥BC,AD=BC=1,
∴AE的最小值為×12=,
∴CE的最大值=-=;
②當AD=AE時,
∴∠1=∠AED=45°,
∴∠DAE=90°,
∴點D與B重合,不合題意舍去;
當EA=ED時,如圖1,
∴∠EAD=∠1=45°,
∴AD平分∠BAC,
∴AD垂直平分BC,
∴BD=1;
當DA=DE時,如圖2,
∵△ADE∽△ACD,
∴DA:AC=DE:DC,
∴DC=CA=
∴BD=BC-DC=2-,
∴當△ADE是等腰三角形時,BD的長為1或2-
點評:本題考查了相似形綜合題:運用相似比進行線段的計算;熟練掌握等腰直角三角形的性質;學會運用分類討論的思想解決數學問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案