【題目】如圖,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 .
(2)①求拋物線的解析式;
②直線AB與拋物線的對(duì)稱軸交于點(diǎn)E,在x軸上是否存在點(diǎn)M,使得ME+MB最小,求出點(diǎn)M的坐標(biāo).
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是等腰三角形?直接寫出所有符合條件的t值.
【答案】(1)(﹣3,0),(0,3);(2)①y=﹣x2﹣2x+3;②M(﹣,0);(3)當(dāng)t為3、4±、4秒時(shí),以P、B、C為頂點(diǎn)的三角形是等腰三角形
【解析】
(1)令x=0,則y=3,令y=0,則x=﹣3,即可求解;
(2)①B的坐標(biāo)為:(0,3),故c=3,將點(diǎn)A的坐標(biāo)代入拋物線表達(dá)式并解得:b=﹣2,即可求解;
②函數(shù)的對(duì)稱軸為:x=﹣1,點(diǎn)E(﹣1,2),點(diǎn)B(0,3),作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′(0,﹣3),連接EB′交x軸于點(diǎn)M,則點(diǎn)M為所求,即可求解;
(3)分PC=PB、BC=PC、BC=PB,三種情況,分別求解即可.
解:(1)y=x+3,令x=0,則y=3,令y=0,則x=﹣3,
故點(diǎn)A、B的坐標(biāo)分別為:(﹣3,0)、(0,3),
故答案為:(﹣3,0),(0,3);
(2)①B的坐標(biāo)為:(0,3),故c=3,
將點(diǎn)A的坐標(biāo)代入拋物線表達(dá)式y=﹣x2+bx+3中得:-(-3)2-3b+3=0
解得:b=﹣2,
∴拋物線的解析式為y=﹣x2﹣2x+3;
②函數(shù)的對(duì)稱軸為:x=﹣1
將x=-1代入解析式y=x+3得y=-1+3=2
∴點(diǎn)E(﹣1,2),點(diǎn)B(0,3),
作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′(0,﹣3),連接EB′交x軸于點(diǎn)M,則點(diǎn)M為所求,
設(shè)直線B′E的表達(dá)式為y=mx+n
將B′(0,﹣3)和E(﹣1,2)代入得:
解得
則直線B′E的表達(dá)式為:y=﹣5x﹣3,
當(dāng)y=0時(shí),x=﹣,故點(diǎn)M(﹣,0);
(3)令y=﹣x2﹣2x+3中y=0,則﹣x2﹣2x+3=﹣(x﹣1)(x+3)=0,
解得:x=1或x=﹣3,
∴C(1,0).
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴D(﹣1,4),P(﹣1,4﹣t).
∵B(0,3),C(1,0),
∴PC2=(﹣1﹣1)2+(4﹣t)2=t2﹣8t+20,PB2=(﹣1)2+(4﹣t﹣3)2=t2﹣2t+2,BC2=12+32=10.
①當(dāng)PC=PB時(shí),
即t2﹣8t+20=t2﹣2t+2解得:t=3;
②當(dāng)BC=PC時(shí),
即100= t2﹣8t+20解得:t=4±;
③當(dāng)BC=PB時(shí),
即100= t2﹣2t+2解得:t=4或﹣2(舍去負(fù)值)
綜上可知:當(dāng)t為3、4±、4秒時(shí),以P、B、C為頂點(diǎn)的三角形是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形中,,,點(diǎn),分別在邊,上,直線交矩形對(duì)角線于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且點(diǎn)在射線上.
(1)如圖1所示,當(dāng)時(shí),求的長(zhǎng);
(2)如圖2所示,當(dāng)時(shí),求的長(zhǎng);
(3)請(qǐng)寫出線段的長(zhǎng)的取值范圍,及當(dāng)的長(zhǎng)最大時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某配餐公司有A,B兩種營養(yǎng)快餐。一天,公司售出兩種快餐共640份,獲利2160元。兩種快餐的成本價(jià)、銷售價(jià)如下表。
A種快餐 | B種快餐 | |
成本價(jià) | 5元/份 | 6元/份 |
銷售價(jià) | 8元/份 | 10元/份 |
(1)求該公司這一天銷售A、B兩種快餐各多少份?
(2)為擴(kuò)大銷售,公司決定第二天對(duì)一定數(shù)量的A、B兩種快餐同時(shí)舉行降價(jià)促銷活動(dòng)。降價(jià)的A、B兩種快餐的數(shù)量均為第一天銷售A、B兩種快餐數(shù)量的2倍,且A種快餐按原銷售價(jià)的九五折出售,若公司要求這些快餐當(dāng)天全部售出后,所獲的利潤(rùn)不少于3280元,那么B種快餐最低可以按原銷售價(jià)打幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過點(diǎn)A作AC⊥OY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)P是△ABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過點(diǎn)P作PD∥OY交OX于點(diǎn)D,作PE∥OX交OY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC向上平移4個(gè)單位長(zhǎng)度后所得到的△A1B1C1;
(2)畫出△DEF繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后所得到的△D1E1F1;
(3)△A1B1C1和△D1E1F1組成的圖形是軸對(duì)稱圖形嗎?如果是,請(qǐng)直接寫出對(duì)稱軸所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校3男2女共5名學(xué)生參加黃石市教育局舉辦的“我愛黃石”演講比賽.
(1)若從5名學(xué)生中任意抽取3名,共有多少種不同的抽法,列出所有可能情形;
(2)若抽取的3名學(xué)生中,某男生抽中,且必有1女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,是的直徑,點(diǎn)是半圓上的一動(dòng)點(diǎn)(不與,重合),弦平分,過點(diǎn)作交射線于點(diǎn).
(1)求證:與相切:
(2)若,,求長(zhǎng);
(3)若,長(zhǎng)記為,長(zhǎng)記為,求與之間的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,M、N、C三點(diǎn)的坐標(biāo)分別為(,1),(3,1),(3,0),點(diǎn)A為線段MN上的一個(gè)動(dòng)點(diǎn),連接AC,過點(diǎn)A作AB⊥AC交y軸于點(diǎn)B,當(dāng)點(diǎn)A從M運(yùn)動(dòng)到N時(shí),點(diǎn)B隨之運(yùn)動(dòng),設(shè)點(diǎn)B的坐標(biāo)為(0,b),則b的取值范圍是( 。
A.≤b≤1B.≤b≤1C.≤b≤D.≤b≤1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com