【題目】如圖,在△ABC中,∠C=90°,∠A=30°,∠ABC的平分線BD交AC于D,DE⊥AB于點E,若DE=3cm,則AC= ( )
A.9cmB.6cmC.12cmD.3cm
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為x.
(1)則今年南瓜的種植面積為 畝;(用含x的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,平分,以為頂點作,交于點,于點E.
(1)求證:;
(2)圖1中,若,求的長;
(3)如圖2,,平分,以為頂點作,交于點,于點.若,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C、A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2﹣4x+2)(x2﹣4x+6)+4進(jìn)行因式分解的過程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結(jié)果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了一次函數(shù)后,某校數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)的經(jīng)驗,對函數(shù)y=-|x|-2的圖象和性質(zhì)進(jìn)行了探究,下面是該興趣小組的探究過程,請補(bǔ)充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值如表:
x | ... | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ... |
y | ... | -5 | -4 | -3 | n | -3 | -4 | -5 | ... |
①n= ;
②如圖,在所給的平面直角坐標(biāo)系中,描出以表中各組對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點畫出該函數(shù)的圖象;
(2)當(dāng)一2<x≤5時,y的取值范圍是 ;
(3)根據(jù)所畫的圖象,請寫出一條關(guān)于該函數(shù)圖象的性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距l 100米,甲從A地出發(fā),乙從B地出發(fā),相向而行,甲比乙先出發(fā)2分鐘,乙出發(fā)7分鐘后與甲相遇,設(shè)甲、乙兩人相距y米,甲行進(jìn)的時間為t分鐘,y與t之間的函數(shù)關(guān)系如圖所示.請你結(jié)合圖象探究:
(1)甲的行進(jìn)速度為每分鐘__________米,m =____分鐘;
(2)求直線PQ對應(yīng)的函數(shù)表達(dá)式;
(3)求乙的行進(jìn)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標(biāo)系xOy中,點P在坐標(biāo)平面內(nèi),且點P的橫坐標(biāo)比縱坐標(biāo)大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com