【題目】為解方程(x2﹣12﹣5x2﹣1+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則

x2﹣1=y2,原方程化為y2﹣5y+4=0

解得y1=1,y2=4

當(dāng)y=1時(shí),x21=1x2=2x=±;

當(dāng)y=4時(shí),x21=4,x2=5x=±

∴原方程的解為x1=,x2=x3=,x4=

解答問(wèn)題:

1)填空:在由原方程得到方程①的過(guò)程中,利用   法達(dá)到了降次的目的,體現(xiàn)了   的數(shù)學(xué)思想.

2)解方程:x4﹣x2﹣6=0

【答案】1)換元;轉(zhuǎn)化;(2x=±

【解析】試題分析:1)在由原方程得到方程①的過(guò)程中,利用換元法達(dá)到了降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;
2)設(shè),原方程可化為關(guān)于的方程,求出方程的解得到的值,即可確定出 的值.

試題解析:(1)在由原方程得到方程①的過(guò)程中,利用換元法達(dá)到了降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;

故答案為:換元;轉(zhuǎn)化;

2)設(shè)原方程可化為

解得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)CADEF于點(diǎn)D,DAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB;

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形OBDC的對(duì)角線相交于點(diǎn)E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)B.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示的方向運(yùn)動(dòng),每次運(yùn)動(dòng)一個(gè)單位,A3A4A5A8A9A10都是等邊三角形.第一次從(0,1)運(yùn)動(dòng)到點(diǎn)A10,2),第二次接著運(yùn)動(dòng)到點(diǎn)A21,2),第三次運(yùn)動(dòng)到點(diǎn)A31,1),,經(jīng)過(guò)2019次運(yùn)動(dòng),動(dòng)點(diǎn)P所在位置A2019的坐標(biāo)是(  )

A.807,B.2

C.,D.8072

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題發(fā)現(xiàn)

如圖①,在RtABC中,∠A90°ABkAC,點(diǎn)DAB上一點(diǎn),DEBC

填空:BD,CE的數(shù)量關(guān)系為   ;位置關(guān)系為   ;

2)類比探究

如圖②,將ADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為αα≤90°),連接BD,CE,請(qǐng)問(wèn)(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由.

3)拓展延伸

在(2)的條件下,將ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,直線BDCE交于點(diǎn)F,若AC1,AB,當(dāng)∠ACE15°時(shí),請(qǐng)直接寫(xiě)出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, ,點(diǎn)分別是邊的中點(diǎn),將繞著點(diǎn)旋轉(zhuǎn),點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),線段的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖①).為了測(cè)量雕塑的高度,小明利用三角板測(cè)得雕塑頂端A點(diǎn)的仰角為30°,底部B點(diǎn)的俯角為45°,小華在五樓找到一點(diǎn)D,利用三角板測(cè)得A點(diǎn)的俯角為60°(如圖②).若已知CD10米,請(qǐng)求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)=1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工材料若干千克,價(jià)格為每千克40元,物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克70元,不低于每千克40元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),日銷(xiāo)量y(千克)是銷(xiāo)售單價(jià)x()的一次函數(shù),且當(dāng)x70時(shí),y80x60時(shí),y100.在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用350元.

(1)yx的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)求該公司銷(xiāo)售該原料日獲利w()與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式;

(3)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一副三角板擺放在一起,組成四邊形ABCD,∠ABC=∠ACD90°,∠ADC60°,∠ACB45°,連接BD,則tanCBD的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案