【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.

(1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);

(2)連接EF,求∠EFC的正切值;

(3)如圖2,將CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.

【答案】(1)E(2,3);(2);(3).

【解析】(1)先確定出點(diǎn)C坐標(biāo),進(jìn)而得出點(diǎn)F坐標(biāo),即可得出結(jié)論;

(2)先確定出點(diǎn)F的橫坐標(biāo),進(jìn)而表示出點(diǎn)F的坐標(biāo),得出CF,同理表示出CF,即可得出結(jié)論;

(3)先判斷出EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.

1)OA=3,OB=4,

B(4,0),C(4,3),

FBC的中點(diǎn),

F(4,),

F在反比例y=函數(shù)圖象上,

k=4×=6,

∴反比例函數(shù)的解析式為y=,

E點(diǎn)的坐標(biāo)為3,

E(2,3);

(2)F點(diǎn)的橫坐標(biāo)為4,

F(4,),

CF=BC﹣BF=3﹣=

E的縱坐標(biāo)為3,

E(,3),

CE=AC﹣AE=4﹣=,

RtCEF中,tanEFC=,

(3)如圖,由(2)知,CF=,CE=,,

過點(diǎn)EEHOBH,

EH=OA=3,EHG=GBF=90°,

∴∠EGH+HEG=90°,

由折疊知,EG=CE,F(xiàn)G=CF,EGF=C=90°,

∴∠EGH+BGF=90°,

∴∠HEG=BGF,

∵∠EHG=GBF=90°,

∴△EHG∽△GBF,

,

,

BG=

RtFBG中,FG2﹣BF2=BG2,

2﹣(2=

k=,

∴反比例函數(shù)解析式為y=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE③tan∠OCD =,中,正確的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)一班和二班各派出10名學(xué)生參加一分鐘跳繩比賽,成績(jī)?nèi)缦卤恚?/span>

跳繩成績(jī)(個(gè))

132

133

134

135

136

137

一班人數(shù)(人)

1

0

1

5

2

1

二班人數(shù)(人)

0

1

4

1

2

2

1)兩個(gè)班級(jí)跳繩比賽成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:

眾數(shù)

中位數(shù)

平均數(shù)

方差

一班

a

135

135

c

二班

134

b

135

1.8

表中數(shù)據(jù)a ,b ,c ;

2)請(qǐng)用所學(xué)的統(tǒng)計(jì)知識(shí),從兩個(gè)角度比較兩個(gè)班跳繩比賽的成績(jī).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)Am+2,3m+4)在直線l上,點(diǎn)Bb,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點(diǎn),則b的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn)Cx軸上,OA5OC13,如圖所示,在OA上取一點(diǎn)E,將EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn),則E點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),與軸交于點(diǎn).

1)求拋物線的表達(dá)式;

2)點(diǎn)是拋物線上第二象限內(nèi)的點(diǎn),連接,設(shè)的面積為,當(dāng)取最大值時(shí),求點(diǎn)的坐標(biāo);

3)作射線,將射線點(diǎn)順時(shí)針旋轉(zhuǎn)交拋物線于另一點(diǎn),在射線上是否存在一點(diǎn),使的周長(zhǎng)最小.若存在,求出的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓之間的距離AC=24m,現(xiàn)需了解甲樓對(duì)乙樓的采光的影響情況,當(dāng)太陽光與水平線的夾角為30°時(shí),求甲樓的影子在乙樓上有多高?(精確到0.1m,≈1.41,≈1.73)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片沿對(duì)角線翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)(落在矩形所在平面內(nèi),相交于點(diǎn),接.

(1)在圖1中,

的位置關(guān)系為__________________

②將剪下后展開,得到的圖形是_________________;

(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖2所示,結(jié)論①、②是否成立,若成立,請(qǐng)對(duì)結(jié)論②加以證明,若不成立,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案