【題目】把一副三角板如圖放置 其中∠ACB=DEC=90A=45,D=30,斜邊 AB=4,CD=5把三角板DCE繞點C順時針旋轉(zhuǎn)15得到三角形D1CE (如圖二),此時ABCD1交于點O,則線段AD1的長度為( )

A. B. C. D. 4

【答案】A

【解析】解:如圖乙所示,∵∠3=15°D1CE1=90°-30°=60°,∴∠BCO=60°-15°=45°∵∠ACB=90°,∴∠ACO=45°,∴∠AOC=∠AOD1=90°∵∠B=∠CAO=45°,AO=OB=OC=

AB=2cm).∵∠ACB=90°CO=AB=×4=2cm).CD1=5cm),OD1=CD1OC=52=3cm).RtAD1O中,AD1===cm).故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長.

(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.

(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設x是實數(shù),現(xiàn)在我們用{x}表示不小于x的最小整數(shù),如{3.2}=4,{﹣2.6}=﹣2,{4}=4,{﹣5}=5.在此規(guī)定下任一實數(shù)都能寫出如下形式:x={x}﹣b,其中0≤b<1.

(1)直接寫出{x}與x,x+1的大小關系是   (由小到大);

(2)根據(jù)(1)中的關系式解決下列問題:

求滿足{3x+11}=6的x的取值范圍;

解方程:{3.5x+2}=2x﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠BDC.
(1)求證:△ABD∽△DCB;
(2)若AB=12,AD=8,CD=15,求DB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在購買某場足球賽門票時,設購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:

方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;

(總費用=廣告贊助費+門票費)

方案二:購買門票方式如圖所示.

解答下列問題:

(1)方案一中,y與x的函數(shù)關系式為

方案二中,當0x100時,y與x的函數(shù)關系式為 ,

當x>100時,y與x的函數(shù)關系式為 ;

(2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最。空堈f明理由;

(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58000元,求甲、乙兩單位各購買門票多少張.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1y1=x+my軸交于點A0,6),直線l2y=kx+1分別與x軸交于點B2,0),與y軸交于點C,兩條直線交點記為D

1m=   ,k=   

2)求兩直線交點D的坐標;

3)根據(jù)圖象直接寫出y1y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.在一條不完整的數(shù)軸上一動點A向左移動4個單位長度到達點B,再向右移動7個單位長度到達點C.

(1)若點A表示的數(shù)為0,求點B、點C表示的數(shù);

(2)若點C表示的數(shù)為5,求點B、點A表示的數(shù);

(3)如果點A、C表示的數(shù)互為相反數(shù),求點B表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD各頂點的坐標分別為A(0,1)、B(5,1)、C(7,3)、D(2,5).

(1)在如圖所示的平面直角坐標系畫出該四邊形;

(2)四邊形ABCD的面積是________;

(3)四邊形ABCD內(nèi)(邊界點除外)一共有_____個整點(即橫坐標和縱坐標都是整數(shù)的點).

查看答案和解析>>

同步練習冊答案