【題目】如圖,在△ABC中,∠C=90°,點(diǎn)D為邊BC上一點(diǎn),點(diǎn)E為邊AB的中點(diǎn),過(guò)點(diǎn)A作AF∥BC,交DE的延長(zhǎng)線與點(diǎn)F,連接BF.
(1)求證:四邊形ADBF是平行四邊形;
(2)若∠ADF=∠BDF,DF=2CD,求∠ABC的度數(shù).
【答案】
(1)證明:∵AF∥BC,
∴∠AFE=∠BDE,
在△AEF與△BED中, ,
∴△AEF≌△BED,
∴AF=BD,
∵AF∥BD,
∴四邊形ADBF是平行四邊形
(2)解:∵∠ADF=∠BDF,
∴∠ADF=∠AFD,
∴AD=AF,
∴ADBF是菱形,
∴DF=2DE,AE⊥DF,
∵DF=2CD,
∵∠C=90°,
∴DC=DE,
在Rt△ACD與Rt△AED中, ,
∴Rt△ACD≌Rt△AED,
∴AC=AE= AB,
∴∠ABC=30°
【解析】(1)根據(jù)平行線的性質(zhì)得到∠AFE=∠BDE,根據(jù)全等三角形的性質(zhì)得到AF=BD,于是得到結(jié)論;(2)根據(jù)已知條件得到ADBF是菱形,根據(jù)菱形的性質(zhì)得到AB⊥DF,根據(jù)全等三角形的性質(zhì)得到AC=AE= AB,于是得到結(jié)論.
【考點(diǎn)精析】本題主要考查了直角三角形斜邊上的中線和平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形斜邊上的中線等于斜邊的一半;若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一副形似“秋蟬”的圖案,其實(shí)線部分是由正方形、正五邊形和正六邊形疊放在一起形成的,則圖中∠MON的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用釘子把木棒AB,BC和CD分別在端點(diǎn)B,C處連接起來(lái),AB,CD可以轉(zhuǎn)動(dòng),用橡皮筋把AD連接起來(lái),設(shè)橡皮筋A(yù)D的長(zhǎng)是x cm.
(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;
(2)在(1)的條件下要圍成一個(gè)四邊形,你能求出橡皮筋長(zhǎng)x的取值范圍嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°
(1)用尺規(guī)作AB的垂直平分線MN交BC于點(diǎn)P(不寫作法,保留作圖痕跡).
(2)連接AP,如果AP平分∠CAB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,線段AC=6,BC=4,點(diǎn)M、N分別是AC、BC的中點(diǎn),求MN的長(zhǎng)度;
(2)根據(jù)(1)的計(jì)算過(guò)程與結(jié)果,設(shè)AC+BC=a,其它條件不變,請(qǐng)猜想出MN的長(zhǎng)度嗎?并說(shuō)明理由;
(3)對(duì)于(1)題,如果將“點(diǎn)C在線段AB上”改為“點(diǎn)C在射線AB上”,其它條件不變,求MN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1= 的圖象與一次函數(shù)y2= x的圖象交于點(diǎn)A、B,點(diǎn)B的橫坐標(biāo)是4,點(diǎn)P(1,m)在反比例函數(shù)y1= 的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2;
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。
現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使點(diǎn)N在OC的反向延長(zhǎng)線上,請(qǐng)直接寫出圖中∠MOB的度數(shù);
(2)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù);
(3)將圖1中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖4,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄?/span>∠AOM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上A、B兩點(diǎn)對(duì)應(yīng)的數(shù)為0、10,P為數(shù)軸上一點(diǎn)
(1)點(diǎn)P為AB線段的中點(diǎn),點(diǎn)P對(duì)應(yīng)的數(shù)為 .
(2)數(shù)軸上有點(diǎn)P,使P到A,B的距離之和為20,點(diǎn)P對(duì)應(yīng)的數(shù)為 .
(3)若點(diǎn)P點(diǎn)表示6,點(diǎn)M以每秒鐘5個(gè)單位的速度從A點(diǎn)向右運(yùn)動(dòng),點(diǎn)N以每秒鐘1個(gè)單位的速度從B點(diǎn)向右運(yùn)動(dòng),t秒后有PM=PN,求時(shí)間t的值(畫圖寫過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com