【題目】已知,兩正方形在數(shù)軸上運(yùn)動(dòng),起始狀態(tài)如圖所示.A、F表示的數(shù)分別為-2、10,大正方形的邊長(zhǎng)為4個(gè)單位長(zhǎng)度,小正方形的邊長(zhǎng)為2個(gè)單位長(zhǎng)度,兩正方形同時(shí)出發(fā),相向而行,小正方形的速度是大正方形速度的兩倍,兩個(gè)正方形從相遇到剛好完全離開(kāi)用時(shí)2秒.完成下列問(wèn)題:
(1)求起始位置D、E表示的數(shù);
(2)求兩正方形運(yùn)動(dòng)的速度;
(3)M、N分別是AD、EF中點(diǎn),當(dāng)正方形開(kāi)始運(yùn)動(dòng)時(shí),射線MA開(kāi)始以15°/s的速度順時(shí)針旋轉(zhuǎn)至MD結(jié)束,射線NF開(kāi)始以30°/s的速度逆時(shí)針旋轉(zhuǎn)至NE結(jié)束,若兩射線所在直線互相垂直時(shí),求MN的長(zhǎng).
【答案】(1)0,6;(2)小正方形速度2個(gè)單位/秒,大正方形速度1個(gè)單位/秒;(3)t=2, MN=3,t=6, MN=9
【解析】
(1)利用圖象和正方形的邊長(zhǎng)即可得出;
(2)設(shè)小正方形的速度是2x個(gè)單位/秒,大正方形的速度是x個(gè)單位/秒,然后列方程計(jì)算即可;
(3)由題意可得若想要兩射線所在直線互相垂直,則有①15°t+30°t=90°或②15°t+30°t=270°
兩種情況,根據(jù)兩種情況分別討論即可.
(1)∵A、F表示的數(shù)分別為-2、10,大正方形的邊長(zhǎng)為4個(gè)單位長(zhǎng)度,小正方形的邊長(zhǎng)為2個(gè)單位長(zhǎng)度,
∴D表示的數(shù)為:-2+2=0,E表示的數(shù)為:10-4=6;
(2)解:設(shè)小正方形的速度是2x個(gè)單位/秒,大正方形的速度是x個(gè)單位/秒,
則有2(2x+x)=2+4,
解得:x=1,
∴小正方形的速度是2個(gè)單位/秒,
故小正方形速度2個(gè)單位/秒,大正方形速度1個(gè)單位/秒;
(3)設(shè)運(yùn)動(dòng)時(shí)間為t,
由題意可得若想要兩射線所在直線互相垂直,
則有①15°t+30°t=90°或②15°t+30°t=270°,
①15°t+30°t=90°,解得t=2,
此時(shí)小正方形運(yùn)動(dòng)了4個(gè)單位,D點(diǎn)在數(shù)字4的位置,大正方形運(yùn)動(dòng)了2個(gè)單位,E點(diǎn)也在數(shù)字4的位置,即D,E重合,
∵M、N分別是AD、EF中點(diǎn),
∴MN=3;
②15°t+30°t=270°,解得t=6,
此時(shí)小正方形運(yùn)動(dòng)了12個(gè)單位,D點(diǎn)在數(shù)字12的位置,大正方形運(yùn)動(dòng)了6個(gè)單位,E點(diǎn)在數(shù)字0的位置,
∵M、N分別是AD、EF中點(diǎn),
∴此時(shí)M點(diǎn)位于數(shù)字11的位置,N點(diǎn)位于數(shù)字2的位置,
∴MN=11-2=9;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=4cm,AD=6cm,延長(zhǎng)AB到E,使BE=2AB,連接CE,動(dòng)點(diǎn)F從A出發(fā)以2cm/s的速度沿AE方向向點(diǎn)E運(yùn)動(dòng),動(dòng)點(diǎn)G從E點(diǎn)出發(fā),以3cm/s的速度沿E→C→D方向向點(diǎn)D運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),F(xiàn)C與EG互相平分;
(2)連接FG,當(dāng)t< 時(shí),是否存在時(shí)間t使△EFG與△EBC相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)△EFG的面積為y,求出y與t的函數(shù)關(guān)系式,求當(dāng)t為何值時(shí),y有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:以O(shè)為圓心的扇形AOB中,∠AOB=90°,點(diǎn)C為 上一動(dòng)點(diǎn),射線AC交射線OB于點(diǎn)D,過(guò)點(diǎn)D作OD的垂線交射線OC于點(diǎn)E,聯(lián)結(jié)AE.
(1)如圖1,當(dāng)四邊形AODE為矩形時(shí),求∠ADO的度數(shù);
(2)當(dāng)扇形的半徑長(zhǎng)為5,且AC=6時(shí),求線段DE的長(zhǎng);
(3)聯(lián)結(jié)BC,試問(wèn):在點(diǎn)C運(yùn)動(dòng)的過(guò)程中,∠BCD的大小是否確定?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC∽△ADE的是( )
A.∠C=∠AED
B.
C.∠B=∠D
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多30元,而用900元購(gòu)買(mǎi)A種零件的數(shù)量和用600元購(gòu)買(mǎi)B種零件的數(shù)量相等.
(1)求A、B兩種零件的單價(jià);
(2)根據(jù)需要,工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件共200件,工廠購(gòu)買(mǎi)兩種零件的總費(fèi)用不超過(guò)14700元,求工廠最多購(gòu)買(mǎi)A種零件多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在直線上,
(1)直線解析式為 ;
(2)畫(huà)出該一次函數(shù)的圖象;
(3)將直線向上平移個(gè)單位長(zhǎng)度得到直線,與軸的交點(diǎn)的坐標(biāo)為 ;
(4)直線與直線相交于點(diǎn),點(diǎn)坐標(biāo)為 ;
(5)三角形ABC的面積為 ;
(6)由圖象可知不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y1= (a>0,a為常數(shù))和y2= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y2= 的圖象上,MC⊥x軸于點(diǎn)C,交y1= 的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y1= 的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y2= 的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:
①S△ODB=S△OCA;
②四邊形OAMB的面積為2﹣a;
③當(dāng)a=1時(shí),點(diǎn)A是MC的中點(diǎn);
④若S四邊形OAMB=S△ODB+S△OCA , 則四邊形OCMD為正方形.
其中正確的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】福田區(qū)某轎車(chē)銷(xiāo)售公司為龍泉工業(yè)區(qū)代銷(xiāo) A 款轎車(chē),為了吸引購(gòu)車(chē)族,銷(xiāo)售公司打出降價(jià)牌,今年 5月份A款轎車(chē)每輛售價(jià)比去年同期每輛售價(jià)低 1萬(wàn)元,如果賣(mài)出相同數(shù)量的 A 款轎車(chē),去年的銷(xiāo)售額為100萬(wàn)元,今年銷(xiāo)售額只有90萬(wàn)元.
(1)今年 5月份 A 款轎車(chē)每輛售價(jià)為多少元?
(2)為了增加收入,該轎車(chē)公司決定再為龍泉工業(yè)區(qū)代銷(xiāo) B款轎車(chē),已知 A款轎車(chē)每輛進(jìn)價(jià)為 7.5萬(wàn)元,B款轎車(chē)每輛進(jìn)價(jià)為 6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元的資金購(gòu)進(jìn)這兩款轎車(chē)共 15 輛,但A款轎車(chē)不多于6輛,試問(wèn)共有幾種進(jìn)貨方案?
(3)在⑵的條件下,B款轎車(chē)每輛售價(jià)為 8萬(wàn)元,為打開(kāi)B款轎車(chē)的銷(xiāo)路,公司決定每售出一輛 B款轎車(chē),返還顧客現(xiàn)金a( 0<a ≤1 )萬(wàn)元.假設(shè)購(gòu)進(jìn)的15輛車(chē)能夠全部賣(mài)出去,試討論采用哪種進(jìn)貨方案可以使該轎車(chē)銷(xiāo)售公司賣(mài)出這 15輛車(chē)后獲得最大利潤(rùn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com