如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過(guò)點(diǎn)A(1,0),B(3,2).
(1)求m的值和拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為C,與y軸交于點(diǎn)D,求四邊形ABCD的面積.
∵直線y=x+m和拋物線y=x2+bx+c都經(jīng)過(guò)點(diǎn)A(1,0),B(3,2).
∴1+m=0,
解得:m=-1;
1+b+c=0
9+3b+c=2
,
解得:
b=-3
c=2
,
故拋物線的解析式為:y=x2-3x+2;

(2)當(dāng)x=0時(shí),x2-3x+2=0,
解得:x=1或x=2,
∴A(1,0),C(2,0),
∴AC=1,
當(dāng)x=0時(shí),y=2,
∴點(diǎn)D(0,2),
∵B(3,2),
∴BDAC,BD=3,
∴S梯形ACBD=
1
2
(AC+BD)•OD=
1
2
×(1+3)×2=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
5
4
x2+
17
4
x+1與y軸交于A點(diǎn),過(guò)點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0)
(1)求直線AB的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過(guò)點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長(zhǎng)度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問(wèn)對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C(0,2).
(1)請(qǐng)說(shuō)明a、b、c的乘積是正數(shù)還是負(fù)數(shù);
(2)若∠OCA=∠CBO,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,與x軸相交于A、B兩點(diǎn)(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用長(zhǎng)為24米的籬笆,一面利用10米的墻,圍成一個(gè)中間隔有一道籬笆的長(zhǎng)方形花園.設(shè)花園的寬AB為x米,面積為y米2
(1)求y與x之間的函數(shù)關(guān)系式
(2)當(dāng)寬AB為多少是,圍成面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在學(xué)校田徑運(yùn)動(dòng)會(huì)上,九年級(jí)的一名高個(gè)子男生拋實(shí)心球,已知實(shí)心球所經(jīng)過(guò)的路線是某個(gè)二次函數(shù)圖象的一部分,如圖所示,如果這個(gè)男生的拋球處A點(diǎn)坐標(biāo)為(0,2),實(shí)心球在空中線路的最高點(diǎn)B點(diǎn)的坐標(biāo)是(6,5).
(1)求這個(gè)二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠(yuǎn)為“好成績(jī)”,問(wèn)該男生在這次拋擲中,能取得“好成績(jī)”嗎?試通過(guò)計(jì)算說(shuō)明.(
15
≈3.873)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

崇左市政府大樓前廣場(chǎng)有一噴水池,水從地面噴出,噴出水的路徑是一條拋物線.如果以水平地面為x軸,建立如圖所示的平面直角坐標(biāo)系,水在空中劃出的曲線是拋物線y=-x2+4x(單位:米)的一部分.則水噴出的最大高度是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我市有一種可食用的野生菌,上市時(shí),某經(jīng)銷公司按市場(chǎng)價(jià)格30元/千克收購(gòu)了這種野生菌1000千克存放入冷庫(kù)中,據(jù)預(yù)測(cè),該野生菌的市場(chǎng)價(jià)格y(元)與存放天數(shù)x(天)之間的部分對(duì)應(yīng)值如下表所示:
存放天數(shù)x(天)246810
市場(chǎng)價(jià)格y(元)3234363840
但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫(kù)中最多保存110天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤(rùn)w元并求出最大利潤(rùn).(利潤(rùn)=銷售總額-收購(gòu)成本-各種費(fèi)用)
(3)該公司以最大利潤(rùn)將這批野生菌一次性出售的當(dāng)天,再次按市場(chǎng)價(jià)格收購(gòu)這種野生1180千克,存放入冷庫(kù)中一段時(shí)間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬(wàn)元,請(qǐng)你確定此時(shí)市場(chǎng)的最低價(jià)格應(yīng)為多少元?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):
14
≈3.742,
1.4
≈1.183

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校課間操出操時(shí)樓梯口常出現(xiàn)擁擠現(xiàn)象,為詳細(xì)了解情況,九(1)班數(shù)學(xué)課題學(xué)習(xí)小組在樓梯口對(duì)前10分鐘出入人數(shù)進(jìn)行了觀察記錄,并根據(jù)得到的數(shù)據(jù)繪制成下面兩幅圖:
(1)在2至5分鐘時(shí),每分鐘出樓梯口的人數(shù)p(人)與時(shí)間t(分)的關(guān)系可以看作一次函數(shù),請(qǐng)你求出它的表達(dá)式.
(2)若把每分鐘到達(dá)樓梯口的人數(shù)y(人)與時(shí)間t(分)(2≤t≤8)的關(guān)系近似的看作二次函數(shù)y=-t2+12t+49,問(wèn)第幾分鐘時(shí)到達(dá)樓梯口的人數(shù)最多?最多人數(shù)是多少?
(3)調(diào)查發(fā)現(xiàn),當(dāng)樓梯口每分鐘增加的滯留人數(shù)達(dá)到24人時(shí),就會(huì)出現(xiàn)安全隱患.請(qǐng)你根據(jù)以上有關(guān)部門信息分析是否存在安全隱患.若存在,求出存在隱患的時(shí)間段.若不存在,請(qǐng)說(shuō)明理由.(每分鐘增加的滯留人數(shù)=每分鐘到達(dá)樓梯口的人數(shù)-每分鐘出樓梯樓的人數(shù))
(4)根據(jù)你分析的結(jié)果,對(duì)學(xué)校提一個(gè)合理化建議.(字?jǐn)?shù)在40個(gè)以內(nèi))

查看答案和解析>>

同步練習(xí)冊(cè)答案