【題目】如圖,是直徑,于點(diǎn),連接交于點(diǎn),過點(diǎn)作的切線交于點(diǎn),連接交于點(diǎn)
(1)求證:
(2)連接并延長(zhǎng),交于點(diǎn),填空:
①當(dāng)的度數(shù)為_________時(shí),四邊形為菱形;
②當(dāng)的度數(shù)為__________時(shí),四邊形為正方形;
【答案】(1)詳見解析;(2)①30°;②22.5°
【解析】
(1)連接OC,利用切線的性質(zhì)得∠1+∠4=90°,再利用等腰三角形和互余證明∠1=∠2,然后根據(jù)等腰三角形的判定定理得到結(jié)論;
(2)①當(dāng)∠D=30°時(shí),∠DAO=60°,證明△CEF和△FEG都為等邊三角形,從而得到EF=FG=GE=CE=CF,則可判斷四邊形ECFG為菱形;
②當(dāng)∠D=22.5°時(shí),∠DAO=67.5",利用三角形內(nèi)角和計(jì)算出∠COE=45°,利用對(duì)稱得∠EOG=45°,則∠COG=90°,接著證明△OEC≌△OEG得到∠OGE=∠OCE=90°,從而證明四邊形ECOG為矩形,然后進(jìn)一步證明四邊形ECOG為正方形.
(1)證明:連接,如圖:
∵是切線,
∴,
,
,
,
,
,
,
,
,
;
(2)①當(dāng)∠D=30°吋,∠DAO=60°,
而AB為直徑,
∴∠ACB=90°,
∵∠B=30°,
∴∠3=∠2=60°,
而CE=FE,
∴△CEF為等邊三角形,
∴CE=CF=EF,
同理可得∠GFE=60°,
利用對(duì)稱得FG=FC,
∵FG=EF,
∴△FEG為等邊三角形,
∴EG=FG,
∴EF=FG=GE=CE,
∴四辺形ECFG為菱形;
故答案為:30°;
②當(dāng)∠D= 22.5 °時(shí),∠DAO= 67.5°,
而OA=OC,
∴∠OCA=∠OAC=67.5°,
∴∠AOC=180°-67.5°-67.5°=45°,
∴∠AOC=45°,
∴∠COE=45°,
利用對(duì)稱得∠EOG=45°,
∴∠COG=90°,
易得△OEC≌△OEG,
∴∠OGE=∠OCE=90° ,
∴.四邊形ECOG為矩形,
而OC=OG,
∴四邊形ECOG為正方形,
故答案為:22.5°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OB=OC=3OA,求拋物線的解析式( 。
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)習(xí)興趣如何是每位教師非常關(guān)注的問題.為此,某校教師對(duì)該校部分學(xué)生的學(xué)習(xí)興趣進(jìn)行了一次抽樣調(diào)查(把學(xué)生的學(xué)習(xí)興趣分為三個(gè)層次,A層次:很感興趣;B層次:較感興趣;C層次:不感興趣);并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求圖②中C層次所在扇形的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校1200名學(xué)生中大約有多少名學(xué)生對(duì)學(xué)習(xí)感興趣(包括A層次和B層次).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校為高一新生設(shè)計(jì)的學(xué)生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長(zhǎng)?(材質(zhì)及其厚度等暫忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰的底邊長(zhǎng)為4,面積為12,腰的垂直平分線分別交邊于點(diǎn),若點(diǎn)D是的中點(diǎn),點(diǎn)M為線段上一動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),長(zhǎng)為( )
A.1B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列有規(guī)律的算式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225,…,探究并運(yùn)用其規(guī)律計(jì)算:113+123+133+143+153+163+173+183+193+203的結(jié)果可表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB是半圓O的直徑,點(diǎn)E是CD的中點(diǎn),BE交半圓O于點(diǎn)F,連接DF.
(1)求證:DF是半圓O的切線;
(2)若AB =8,AD =3,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一“L”型紙片是由5個(gè)邊長(zhǎng)都是10cm的正方形拼接而成,過點(diǎn)I的直線分別與AE,JN交于點(diǎn)P,Q,且“L”型紙片被直線PQ分成面積相等的上下兩部分,將該紙片沿BG,CH,DI,IJ折成一個(gè)無蓋的正方體盒子后,點(diǎn)P,Q之間的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC≤BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、點(diǎn)F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com