【題目】1)如圖1,在正方形中,點(diǎn)、分別是邊上的動點(diǎn),且,求證:

   

2)如圖2,在正方形中,如果點(diǎn)、分別是延長線上的動點(diǎn),且,則、、之間數(shù)量關(guān)系是什么?請寫出證明過程.

3)如圖1,若正方形的邊長為6,,求的長.

【答案】1)見解析;(2;證明見解析;(3

【解析】

1)把ABE繞點(diǎn)A順時針旋轉(zhuǎn)90°ADG,由“SAS”可證EAFGAF,可得出EFFG,則結(jié)論得證;

2)將ABE繞點(diǎn)A順時針旋轉(zhuǎn)90°至△ADM,根據(jù)SAS可證明EAFMAF,可得EFFM,則結(jié)論得證;

3)由全等三角形的性質(zhì)可得AEAG3EFFG,BEDG,由勾股定理可求DG的長,FD的長,AF的長.

1)證明:把繞點(diǎn)順時針旋轉(zhuǎn)90°,

如圖1,∴,

,

,

,

,

,

;

2)結(jié)論:

證明:如圖2,將繞點(diǎn)順時針旋轉(zhuǎn)90°,

,,

,

;

3)解:由(1)可知

∵正方形的邊長為6,

,

,

,

設(shè),則,,

中,∵,

解得:

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B60)的直線AB與直線OA相交于點(diǎn)A4,2),動點(diǎn)M在線段OA和射線AC上運(yùn)動.

1)求直線AB的解析式.

2)求△OAC的面積.

3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)yx+的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)函數(shù)yx+的自變量x的取值范圍是   

2)下表列出了yx的幾組對應(yīng)值,請寫出m,n的值:m   n   ;

3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

4)結(jié)合函數(shù)的圖象,請完成:

①當(dāng)y=﹣時,x   

②寫出該函數(shù)的一條性質(zhì)   

③若方程x+t有兩個不相等的實數(shù)根,則t的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABOC的頂點(diǎn)A02),點(diǎn)B(﹣40),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限,若將△AOB沿x軸向右運(yùn)動得到△EFG(點(diǎn)AO、B分別與點(diǎn)E、F、G對應(yīng)),運(yùn)動速度為每秒2個單位長度,邊EFOC于點(diǎn)P,邊EGOA于點(diǎn)Q,設(shè)運(yùn)動時間為t0t2)秒.

1)在運(yùn)動過程中,線段AE的長度為   (直接用含t的代數(shù)式表示);

2)若t1,求出四邊形OPEQ的面積S;

3)在運(yùn)動過程中,是否存在四邊形OPEQ為菱形?若存在,直接寫出此時四邊形OPEQ的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BA延長線上一點(diǎn),E是AC的中點(diǎn).

(1)利用尺規(guī)作出∠DAC的平分線AM,連接BE并延長交AM于點(diǎn)F,(要求在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫作法);

(2)試判斷AF與BC有怎樣的位置關(guān)系與數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時間后,到達(dá)位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,F分別在ABC的邊BCAC上,點(diǎn)A,E關(guān)于BF對稱.點(diǎn)DBF上,且ADEF

1)求證:四邊形ADEF為菱形;

2)如果ABC2∠DAE,AD=3FC=5,求AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,ACO的直徑,ADO的切線.點(diǎn)E在直徑AC上,連接EDO于點(diǎn)B,連接AB,且ABBD

(1)求證:ABBE;

(2)O的半徑長為5AB6,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)模擬測試中,六名學(xué)生的數(shù)學(xué)成績?nèi)缦卤硭,下列關(guān)于這組數(shù)據(jù)描述正確的是( 。

A.眾數(shù)是110B.方差是16

C.平均數(shù)是109.5D.中位數(shù)是109

查看答案和解析>>

同步練習(xí)冊答案