(1999•上海)已知反比例函數(shù)y=的圖象和一次函數(shù)y=kx-7的圖象都經過點P(m,2).
(1)求這個一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點A、B在這個一次函數(shù)的圖象上,頂點C、D在這個反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標分別為a和a+2,求a的值.

【答案】分析:(1)根據(jù)點P在函數(shù)y=的圖象上,求出P點坐標,代入一次函數(shù),從而求出一次函數(shù)圖象;
(2)由題意和圖象知等腰梯形ABCD的頂點A、B在這個一次函數(shù)的圖象上,求出A,B,C,D點的坐標,根據(jù)等腰梯形性質得到AB=CD,根據(jù)兩點的距離公式l=得到關于a的方程,解方程即可求出a值.
解答:解:(1)∵點P(m,2)在函數(shù)y=的圖象上,
∴m=6,
∵一次函數(shù)y=kx-7的圖象經過點P(6,2),
得6k-7=2,
∴k=,
∴所求的一次函數(shù)解析式是y=x-7;

(2)過B作BF⊥AD,過C作CE⊥AD,
∵點A、B的橫坐標分別是a和a+2,
∴可得,A(a,-7),B(a+2,-4),
C(a+2,),D(a,),
∵AB=CD,
∴在Rt△CDE與Rt△ABF中,
由勾股定理得:CD2=DE2+EC2=
AB2=AF2+BF2=22+32,
∵等腰梯形ABCD,
∴AB=CD,即,
=±3,
①由,化簡得a2+2a+8=0,方程無實數(shù)根,
②由,化簡得a2+2a-8=0,
∴a1=-4,a2=2.
經檢驗,a1=-4,a2=2均為所求的值.
點評:此題看似比較復雜,其實并不難,主要考查一次函數(shù)和反比例函數(shù)的性質和圖象,學會聯(lián)立方程求出交點坐標,應用等腰梯形的基本性質求出a值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(1999•上海)已知△ABC中,AC=BC,∠CAB=α(定值),圓O的圓心O在AB上,并分別與AC、BC相切于點P、Q.
(1)求∠POQ的大。ㄓ忙帘硎荆;
(2)設D是CA延長線上的一個動點,DE與圓O相切于點M,點E在CB的延長線上,試判斷∠DOE的大小是否保持不變,并說明理由;
(3)在(2)的條件下,如果AB=m(m為已知數(shù)),cosα=,設AD=x,DE=y,求y關于x的函數(shù)解析式(要指出函數(shù)的定義域)

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(1999•上海)已知反比例函數(shù)y=的圖象和一次函數(shù)y=kx-7的圖象都經過點P(m,2).
(1)求這個一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點A、B在這個一次函數(shù)的圖象上,頂點C、D在這個反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標分別為a和a+2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《函數(shù)基礎知識》(02)(解析版) 題型:解答題

(1999•上海)已知△ABC中,AC=BC,∠CAB=α(定值),圓O的圓心O在AB上,并分別與AC、BC相切于點P、Q.
(1)求∠POQ的大小(用α表示);
(2)設D是CA延長線上的一個動點,DE與圓O相切于點M,點E在CB的延長線上,試判斷∠DOE的大小是否保持不變,并說明理由;
(3)在(2)的條件下,如果AB=m(m為已知數(shù)),cosα=,設AD=x,DE=y,求y關于x的函數(shù)解析式(要指出函數(shù)的定義域)

查看答案和解析>>

科目:初中數(shù)學 來源:1999年上海市中考數(shù)學試卷(解析版) 題型:解答題

(1999•上海)已知△ABC中,AC=BC,∠CAB=α(定值),圓O的圓心O在AB上,并分別與AC、BC相切于點P、Q.
(1)求∠POQ的大。ㄓ忙帘硎荆
(2)設D是CA延長線上的一個動點,DE與圓O相切于點M,點E在CB的延長線上,試判斷∠DOE的大小是否保持不變,并說明理由;
(3)在(2)的條件下,如果AB=m(m為已知數(shù)),cosα=,設AD=x,DE=y,求y關于x的函數(shù)解析式(要指出函數(shù)的定義域)

查看答案和解析>>

同步練習冊答案