【題目】如圖,在中,,,,與的平分線交于點,過點作于點,若則的長為( )
A.B.2C.D.4
【答案】B
【解析】
過點O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長,易得四邊形ADFO為正方形,根據(jù)線段間的轉(zhuǎn)化即可得出結(jié)果.
解:過點O作OE⊥BC于E,OF⊥AC于F,
∵BO,CO分別為∠ABC,∠ACB的平分線,
所以OD=OE=OF,
又BO=BO,
∴△BDO≌△BEO,∴BE=BD.
同理可得,CE=CF.
又四邊形ADOE為矩形,∴四邊形ADOE為正方形.
∴AD=AF.
∵在Rt△ABC中,AB=6,AC=8,∴BC=10.
∴AD+BD=6①,
AF+FC=8②,
BE+CE=BD+CF=10③,
①+②得,AD+BD+AF+FC=14,即2AD+10=14,
∴AD=2.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗,我們來研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當(dāng)a=1時的函數(shù)y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數(shù)表達式,直接寫出y的取值范圍;
(2)通過列表、描點、畫圖,在平面直角坐標系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當(dāng)a的值為-2,-,2,3,…時函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識應(yīng)用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點,且滿足x1<x2≤-1時, y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD 和正方形ECGF,其中E、H分別為AD、BC中點,連結(jié)AF、HG、AH.
(1)求證:;
(2)求證:;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,是邊上不同于、的一動點,過作,垂足為,連接.
試說明不論點在邊上何處時,都有與相似;
若,,當(dāng)為何值時,面積最大,并求出最大值;
在中,兩條直角邊、滿足關(guān)系式,是否存在一個的值,使既與全等,也與全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①,若正方形的邊長為6,點分別為邊上的點,且,與交于點,連接,則 ;
問題探究:
(2)如圖②,,是等腰直角三角形,頂點分別在的兩邊上,試說明點在的平分線上;
問題解決:
(3)如圖③,,是等邊三角形,頂點分別在的兩邊上,點在上,且,連接,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,點為三條角平分線的交點,于,于,于,且,,,則點到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:利用完全平方公式,將多項式變形為的形式.
例如:.
(1)填空:將多項式變形為的形式,并判斷與0的大小關(guān)系.
∵.
所以______0(填“>”、“<”、“=”)
(2)如圖①所示的長方形邊長分別是、,求長方形的面積 (用含的式子表示);如圖②所示的長方形邊長分別是、,求長方形的面積 (用含的式子表示)
(3)比較(2)中與的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com