【題目】小明同學(xué)在做作業(yè)時(shí),遇到如下問題:如圖1,已知:等邊△ABC,點(diǎn)D在BC上,以AD為邊作等邊△ADE,連接CE,求證:∠ACE=60°.

(1)請你解答小明的這道題;
(2)在這個(gè)問題中,當(dāng)D在BC上運(yùn)動(dòng)時(shí),點(diǎn)E是否在一條線段上運(yùn)動(dòng)?
(直接答“是”或“不是”)
(3)如圖2,正方形ABCD的邊長為2,E是直線BC上的一個(gè)動(dòng)點(diǎn),以DE為邊作正方形DEFG(DEFG按逆時(shí)針排列)。當(dāng)E在直線BC上運(yùn)動(dòng)時(shí),點(diǎn)G是否在一條直線上運(yùn)動(dòng)?如果是,請你畫出這條直線并證明;如果不是,也請說明理由;
(4)連接AG、CG,①求證:AG2-CE2是定值; ②求AG+CG的最小值(直接寫出答案即可)。

【答案】
(1)

解:證明:∵△ABC和△ADE是等邊三角形,

∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∠B=60°,

∴∠BAD=∠CAE,∴△ABD△ACE,

∴∠ACE=∠B=60°.


(2)

解:是;∵∠ACE=60°,∠ACB=60°,∴∠BCE=120°,

∴E在以CB為一條邊的120°角的另一邊上,

當(dāng)點(diǎn)D與B重合,E與C重合;

當(dāng)點(diǎn)D與C重合時(shí),CE的長最長=AC;

故點(diǎn)E在一條線段上運(yùn)動(dòng)。


(3)

解:是。證明:過G作GH⊥CD于H,∵四邊形ABCD和四邊形DEFG是正方形,

∴∠DCE=90°,∠EDG=90°,DE=DG,

∴∠EDC+∠GDC=90°,∠EDC+∠CED=90°,

∴∠GDC=∠CED,又∵DE=DG,∠DCE=∠GHD=90度,

∴△CDE△HGD,∴GH=CD=2.

又∵GH⊥CD,∴點(diǎn)G是在與CD的距離為2的直線上,過G作直線//CD,即點(diǎn)G在直線l上運(yùn)動(dòng)。


(4)

解:①延長AD交直線l于P,由(1)可得△CDE△HGD,

∴CE=DH。

∵l//CD,GH⊥CD,∴∠DHG=∠PGH=90°,

又∵∠PDH=90°,∴四邊形DHGP是矩形,

∴PG=DH=CE,PD=GH=2,

在Rt△AGP中,AG2-PG2=AP2=42=16,

∴AG2-CE2=AG2-PG2=16是定值。

②過A作關(guān)于l的對稱點(diǎn)A′,連接A′C,交直線l于G′,則AG+CG≥A′G′+CG′=A′C,

在Rt△A′CD中,CD=2,A′D=6,∴A′C = 。


【解析】(1)由△ABC和△ADE是等邊三角形,可得AB=AC,AD=AE,∠BAC=∠DAE=60°,∠B=60°,則∠BAD=∠CAE,由“SAD”證得△ABD△ACE,即可證得∠ACE=∠B=60°;(2)在D的運(yùn)動(dòng)過程中∠BCE=∠ACE=+∠ACB=120°不變,CE邊所在射線不變,且CE的最長=AC;(3)與前面同理,構(gòu)造全等三角形,過G作GH⊥CD于H,證明△CDE△HGD,即GH=CD=2且GH⊥CD,則G在一條直線與CD平行,且距離為2;(4)①在(1)的結(jié)論下,延長AP交直線l于點(diǎn)P,則可得PG=DH=CE,則AG2-CE2=AG2-PG2是定值;②作A點(diǎn)關(guān)于直線l的對稱點(diǎn)A’,連接A’C即為最短路徑,再由勾股定理解出長度。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手工興趣小組的同學(xué)們將自己制作的書簽向本組的其他成員各贈(zèng)送1個(gè),全組共互贈(zèng)了30個(gè),如果全組有x名同學(xué),則根據(jù)題意列出的方程是( 。

A.xx+1)=30B.2xx+1)=30C.xx1)=30D.xx1)=30×2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用因式分解說明(1)32004×319910×3198能被7整除.(2)913324必能被8整除.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(12),B(3,2),C(1,-2)

(1)求證:ABx軸;

(2)求△ABC的面積;

(3)若在y軸上有一點(diǎn)P,使SABPSABC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊平行四邊形紙片ABCD,現(xiàn)將其折疊,使得AB落在AD上點(diǎn)F處,折痕為AE,再將△AEF沿EF翻折,若點(diǎn)A剛好落在CD邊上點(diǎn)G處,則 =。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為3,若OP4,則點(diǎn)P與⊙O的位置關(guān)系是(  )

A.點(diǎn)P在⊙O內(nèi)B.點(diǎn)P在⊙OC.點(diǎn)P在⊙OD.無法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】整式的加減運(yùn)算

(1)化簡:-(x2+y2)+[-3xy-(x2-y2)];

(2)先化簡,再求值:2(x2y+xy)-(x2y-xy)-4xy-x2y)其中x=1,y=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2的圖像向右平移2個(gè)單位,得到新的函數(shù)圖像的表達(dá)式是( )
A.y=x2﹣2
B.y=(x﹣2)2
C.y=x2+2
D.y=(x+2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延長線交BC于F,則圖中全等的直角三角形有(

A.3對
B.4對
C.5對
D.6對

查看答案和解析>>

同步練習(xí)冊答案