【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒4°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)平分;(2)(2)t=59或14 (3)∠AOM-∠NOC=220
【解析】
試題(1)根據(jù)角平分線的定義和平角的定義求出∠COP=30°,即可證得直線ON平分∠AOC;
(2)當ON繞O點旋轉(zhuǎn)至圖②位置時,此時ON轉(zhuǎn)過60°,旋轉(zhuǎn)時間為10秒;當ON轉(zhuǎn)至銳角∠AOC內(nèi)部平分∠AOC時,ON轉(zhuǎn)過90°+150°=240°,旋轉(zhuǎn)時間為40秒;
(3)根據(jù)∠AOM+∠AON=90°,∠AON+∠NOC=60°,得到∠AOM一∠NOC =30°.
試題解析:(1)直線ON平分∠AOC(如圖),理由如下:
∵OM平分∠BOC,且∠BOC=120°,
∴∠COM=60°,
又∠MON=90°,
∴∠POM=90°,
∴∠COP=30°,
又∠AOC=60°,
∴OP平分∠AOC,
即直線ON平分∠AOC.
(2)當ON繞O點旋轉(zhuǎn)至圖②位置時,ON平分∠AOC,此時ON轉(zhuǎn)過60°,
當ON轉(zhuǎn)至銳角∠AOC內(nèi)部平分∠AOC時,ON轉(zhuǎn)過90°+150°=240°,
所以t=10或40(秒) ,
答:旋轉(zhuǎn)時間t的值為10秒或40秒.
(3) ∠AOM—∠NOC=30°,
∵∠AOM+∠AON=90°,
∠AON+∠NOC=60°,
∴∠AOM一∠NOC =30°.
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,假命題有( )
①兩點之間線段最短;
②到角的兩邊距離相等的點在角的平分線上;
③過一點有且只有一條直線與已知直線平行;
④垂直于同一直線的兩條直線平行;
⑤若 的弦AB,CD交于點P,則
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若中學生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現(xiàn)隨機抽取某中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學生;a= %;C級對應的圓心角為 度.
(2)補全條形統(tǒng)計圖;
(3)若該校共有2000名學生,請你估計該校D級學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由大小相同(棱長為1分米)的小立方塊搭成的幾何體如下圖.
(1)請在右圖的方格中畫出該幾何體的俯視圖和左視圖;
(2)圖中有 塊小正方體,它的表面積(含下底面)為 ;
(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要_______個小立方塊,最多要_______個小立方塊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:
(1)他們都行駛了18千米;
(2)甲在途中停留了0.5小時;
(3)乙比甲晚出發(fā)了0.5小時;
(4)相遇后,甲的速度小于乙的速度;
(5)甲、乙兩人同時到達目的地
其中符合圖象描述的說法有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展“我的中國夢”演講比賽活動,九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如下圖所示.
(1)根據(jù)如圖,分別求出兩班復賽的平均成績和方差;
(2)根據(jù)(1)的計算結(jié)果,分析哪個班級5名選手的復賽成績波動小?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,用三種大小不同的5個正方形和一個長方形(陰影部分)拼成長方形ABCD,其中EF=2厘米,最小的正方形的邊長為x厘米.
(1)用含x的代數(shù)式表示FG=________厘米,DG=________厘米.
(2)若長方形ABCD的周長等于52,求x的值
(3)若FG:DG=2:3,求四邊形FGDH(陰影部分)的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com