【題目】問(wèn)題背景
如圖,在正方形的內(nèi)部,作,根據(jù)三角形全等的條件,易得≌≌≌,從而得到四邊形是正方形.
類比探究
如圖,在正的內(nèi)部,作, , , 兩兩相交于, , 三點(diǎn)(, , 三點(diǎn)不重合).
(), , 是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明.
()是否為正三角形?請(qǐng)說(shuō)明理由.
()進(jìn)一步探究發(fā)現(xiàn),圖中的的三邊存在一定的等量關(guān)系,設(shè), , ,請(qǐng)?zhí)剿?/span>, , 滿足的等量關(guān)系.
【答案】(1)見(jiàn)解析;(2)是;(3)
【解析】試題分析:(1)由正三角形的性質(zhì)得出∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;
(2)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;
(3)作AG⊥BD于G,由正三角形的性質(zhì)得出∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,由勾股定理即可得出結(jié)論.
試題解析:( )≌≌,理由如下:
∵是正三角形,
∴, ,
∵, , ,
∴,
在和中, ,
∴≌,
同理可得≌,
∴≌≌.
()是正三角形,理由如下.
∵≌≌,
∴,
∴,
∴是正三角形.
()作于,如圖所示:
∵是正三角形,
∴,
在中, , ,
在中,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:y+2與x﹣3成正比例,且當(dāng)x=5時(shí),y=2.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)當(dāng)y=4時(shí),x的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2012年末統(tǒng)計(jì),杭州市常住人口是880.2萬(wàn)人,用科學(xué)記數(shù)法表示為人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn)在上從向運(yùn)動(dòng),連接交于點(diǎn).
()試證明:無(wú)論點(diǎn)運(yùn)動(dòng)到上何處時(shí),都有≌.
()若點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn),再繼續(xù)在上運(yùn)動(dòng)到點(diǎn),在整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)以每秒單位長(zhǎng)度的速度勻速運(yùn)動(dòng),當(dāng)恰為等腰三角形,求點(diǎn)運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在下列橫線上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.
① ________;②________;③________;④________.
(2)通過(guò)拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請(qǐng)用數(shù)學(xué)式子表示:_________________________;
(3)利用(2)的結(jié)論計(jì)算99992+2×9999×1+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的函數(shù)關(guān)系的圖象.下列說(shuō)法錯(cuò)誤的是( )
A. 乙先出發(fā)的時(shí)間為0.5小時(shí) B. 甲的速度是80千米/小時(shí)
C. 甲出發(fā)0.75小時(shí)后兩車相遇 D. 甲到B地比乙到A地遲5分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且cosα=.下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時(shí),△ABD與△DCE全等;③△DCE為直角三角形時(shí),BD為8或;④0<CE≤6.4.其中正確的結(jié)論是______________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)可能是一個(gè)三角形的邊長(zhǎng)的是( )
A.1,2,4
B.4,5,9
C.4,6,8
D.5,5,11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F, AD交CE于H.
(1)求證:∠CAD=∠CBE
(2)求證:FH∥BD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com