【題目】如圖,已知∠A=∠AGE,∠D=∠DGC.
(1)求證:AB∥CD;
(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度數(shù).

【答案】
(1)證明:∵∠A=∠AGE,∠D=∠DGC,

又∵∠AGE=∠DGC,

∴∠A=∠D,

∴AB∥CD


(2)證明:∵∠1+∠2=180°,

又∵∠CGD+∠2=180°,

∴∠CGD=∠1,

∴CE∥FB,

∴∠C=∠BFD,∠CEB+∠B=180°.

又∵∠BEC=2∠B+30°,

∴2∠B+30°+∠B=180°,

∴∠B=50°.

又∵AB∥CD,

∴∠B=∠BFD,

∴∠C=∠BFD=∠B=50°


【解析】(1)欲證明AB∥CD,只需推知∠A=∠D即可;(2)利用平行線的判定定理推知CE∥FB,然后由平行線的性質(zhì)、等量代換推知∴∠C=∠BFD=∠B=50°.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的判定(同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動(dòng),點(diǎn)B在直線MN上運(yùn)動(dòng).

(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x的兩個(gè)不同的平方根分別是a+3和2a﹣15,且 =4,求x,y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣5x829開口方向是_____;對(duì)稱軸是_____;頂點(diǎn)坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中的假命題是(
A.兩直線平行,內(nèi)錯(cuò)角相等
B.兩直線平行,同旁內(nèi)角相等
C.同位角相等,兩直線平行
D.平行于同一條直線的兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長:中華漢字,寓意深廣。為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的漢字聽寫大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分。為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

請(qǐng)根據(jù)所給的信息,解答下列問題:

(1)a= ,b= ;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)這次比賽成績的中位數(shù)會(huì)落在 分?jǐn)?shù)段;

(4)若成績?cè)?0分以上(包括90分)的為優(yōu)等,則該校參加這次比賽的3000名學(xué)生中成績優(yōu)等的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+∠P=(  )

A.70°
B.80°
C.90°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α與∠β是對(duì)頂角且互補(bǔ),則他們兩邊所在的直線(
A.互相垂直
B.互相平行
C.既不平行也不垂直
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對(duì)購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門。乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元。

(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案