【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°
得到△OA1B1

(1)線段A1B1的長(zhǎng)是 , ∠AOA1的度數(shù)是;
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.

【答案】
(1)6;90°
(2)解:∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,

∴∠OA1B1=∠AOA1,A1B1=OA,

∴B1A1∥OA,

∴四邊形OAA1B1是平行四邊形


(3)解:S=OAA1O=6×6=36.

即四邊形OAA1B1的面積是36


【解析】解:(1)A1B1=AB=6,∠AOA1=90°.
故答案是:6,90°;
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)即可直接求解;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)以及平行線的判定定理證明B1A1∥OA且A1B1=OA即可證明四邊形OAA1B1是平行四邊形;(3)利用平行四邊形的面積公式求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC的頂點(diǎn)和點(diǎn)O均在網(wǎng)格圖的格點(diǎn)上,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1
(1)請(qǐng)畫出△A1B1C1;
(2)以點(diǎn)O為圓心, 為半徑作⊙O,請(qǐng)判斷直線AA1與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示的一塊地,已知AD=12米,CD=9米,∠ADC=90,AB=39米,BC=36米,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,

(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1
(2)畫出△ABC繞原點(diǎn)O旋轉(zhuǎn)180°后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,2).

(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時(shí),求點(diǎn)D的坐標(biāo)及此時(shí)三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩條寬度都為3的紙條重疊在一起,使ABC=60°,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中有紅球、黃球共20個(gè),這些除顏色外都相同,將口袋中的球攪拌均勻,從中隨機(jī)摸出一球,記下顏色后再放回口袋,不斷重復(fù)這一過程,共摸了200次,發(fā)現(xiàn)其中有161次摸到紅球.則這個(gè)口袋中紅球數(shù)大約有(
A.4個(gè)
B.10個(gè)
C.16個(gè)
D.20個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長(zhǎng)方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點(diǎn)與原點(diǎn)重合,坐標(biāo)為(0,0)

(1)寫出點(diǎn)B的坐標(biāo);

(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)B勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度沿射線CD方向勻速運(yùn)動(dòng),若P,Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PQ∥BC;

(3)在Q的運(yùn)行過程中,當(dāng)Q運(yùn)動(dòng)到什么位置時(shí),使△ADQ的面積為9,求此時(shí)Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案