【題目】若中學生體質健康綜合評定成績?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現(xiàn)隨機抽取某中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息,解答下列問題:
(1)在這次調查中,一共抽取了 名學生;a= %;C級對應的圓心角為 度.
(2)補全條形統(tǒng)計圖;
(3)若該校共有2000名學生,請你估計該校D級學生有多少名?
【答案】(1)50,24,72;(2)見解析;(3)若該校共有2000名學生,估計該校D級學生有160名
【解析】
(1)根據(jù)B級的人數(shù)和所占的百分比求出抽取的總人數(shù),再用A級的人數(shù)除以總數(shù)即可求出a;用360°乘以C級所占的百分比即可求出扇形統(tǒng)計圖中C級對應的圓心角的度數(shù);
(2)用抽取的總人數(shù)減去A、B、D的人數(shù),求出C級的人數(shù),從而補全統(tǒng)計圖;
(3)用D級所占的百分比乘以該校的總人數(shù),即可得出該校D級的學生數(shù).
解:(1)在這次調查中,一共抽取的學生數(shù)是:=50(人),
a=×100%=24%;扇形統(tǒng)計圖中C級對應的圓心角為×360°=72°;
故答案為:50,24,72;
(2)C級的人數(shù)為:50-12-24-4=10(人)
補全條形統(tǒng)計圖如圖.
(3)∵2000×=160名
∴若該校共有2000名學生,估計該校D級學生有160名.
科目:初中數(shù)學 來源: 題型:
【題目】某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x+1與y軸交于點A,與x軸交于點D,拋物線y= x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).在拋物線的對稱軸上找一點M,使|AM﹣MC|的值最大,求出點M的坐標__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當∠AOB是直角,∠BOC=60°時,∠MON的度數(shù)是多少?
(2)如圖2,當∠AOB=α,∠BOC=60°時,猜想∠MON與α的數(shù)量關系;
(3)如圖3,當∠AOB=α,∠BOC=β時,猜想∠MON與α、β有數(shù)量關系嗎?如果有,指出結論并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,∠AOB=∠AOC,射線OE是射線OB的反向延長線.
(1)求射線OC的方向角;
(2)求∠COE的度數(shù);
(3)若射線OD平分∠COE,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與直線和直線分別交于點(在的上方).
直線和直線交于點,點的坐標為 ;
求線段的長(用含的代數(shù)式表示);
點是軸上一動點,且為等腰直角三角形,求的值及點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某實驗中學有一塊四邊形的空地ABCD,如圖所示,學校計劃在空地上種植草坪,經(jīng)測量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,間學校需要投入多少資金買草坪?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒4°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠NOC之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, , 是的角平分線,以為圓心, 為半徑作⊙.
()求證: 是⊙的切線.
()已知交⊙于點,延長交⊙于點, ,求的值.
()在()的條件下,設⊙的半徑為,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com