【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經過點D,與BC的交點為N.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.

【答案】(1) y=-;y=-x-1(2)(-10,9)或(8,-9).

【解析】試題分析:本題主要考查一次函數(shù)的解析式,反比例函數(shù)的解析式以及一次函數(shù)圖象與性質,(1)首先根據(jù)正方形性質得到A,B的坐標,再根據(jù)AD=2DBAM=2MO求出DM的坐標,最后代入一次函數(shù)和反比例函數(shù)中求解出解析式,(2)首先求解出N點坐標,之后求出梯形OMNC的面積,再列出OPM的面積表達式,最后根據(jù)求解出P點的坐標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙內將△ABC水平向右平移4個單位得到△A′B′C′

(1)補全△A′B′C′,利用網(wǎng)格點和直尺畫圖;

(2)圖中ACA1C1的關系是:______

(3)畫出△ABCAB邊上的中線CE;

(4)平移過程中,線段AC掃過的面積是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點A是雙曲線y與直線y=-x(k+1)在第二象限的交點.ABx軸于B,且SABO

(1)求這兩個函數(shù)的解析式;

(2)求直線與雙曲線的兩個交點AC的坐標和AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D、E分別在邊AB、AC上,DE∥BC

1)試問△ADE是否是等腰三角形,并說明理由.

2)若MDE上的點,且BM平分,CM平分,若的周長為20BC=8.的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,AOM的面積為3.

(1)求反比例函數(shù)的解析式;

(2)設點B的坐標為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ADBC,AP平分∠DABBP平分∠ABC,它們的交點P在線段CD上,下面的結論:①APBP;②點P到直線AD,BC的距離相等;③PDPC.其中正確的結論有( )

A. ①②③ B. ①② C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有2個紅球(記為紅1、紅2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.

(1)從中任意摸出1個球,恰好摸到紅球的概率是

(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內的A、B兩點,與y軸交于點C,過點B作BMx軸,垂足為M,BM=OM,OB=2,點A的縱坐標為4.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求下列各式中的x的值:

18x31250;

2(x3)29=0

【答案】1x=-;2x1=6x2=0.

【解析】試題分析:(1)立方根定義解方程.(2)平方根定義解方程.

試題解析:(1)8x31250,

x3=,

x=-.

2(x3)29=0,

(x3)2=9,

x-3=,

x1=6x2=0.

型】解答
束】
19

【題目】1)已知某數(shù)的平方根是 的立方根是,求的平方根.

2)已知y=+-8,求的值.

查看答案和解析>>

同步練習冊答案