【題目】(1)問題引入:如圖1所示,正方形和正方形,則與的數(shù)量關(guān)系是 , ;
(2)類比探究:如圖2所示,為、的中點,正方形和正方形中,判斷和的數(shù)量關(guān)系,并求出的值.
(3)解決問題:
①若把(1)中的正方形都改成矩形,且,則(1)中的結(jié)論還成立嗎?若不能成立,請寫出與的關(guān)系,并求出的值;
②若把(2)中的正方形也都改成矩形,且,請直接寫出和的關(guān)系以及的值.
【答案】(1) ;(2) ,理由見解析;(3)①結(jié)論不成立.此時.理由見解析;②.
【解析】
(1)根據(jù)SAS證明△ABE≌△ADG即可得到BE=DG,連接AC、AF,證明△CAF∽△DAG,即可得到;
(2)連接,證明△EOH≌△FOG得到,再證明,得到,得到BE=FC,再證明即可求出;
(3)①證明得到BE=3DG,連接,根據(jù)tan∠FAG=tan∠CAD=3,證明,根據(jù)證明,得到;
②連接,證明△EOH≌△FOG得到,再證明,得到,得到BE=FC,再證明即可求出.
(1) ∵四邊形ABCD與四邊形AEFG都是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAD-∠EAD=∠EAG-∠EAD,
即∠BAE=∠DAG,
∴△ABE≌△ADG,
∴BE=DG,
連接AC、AF,則, ,
∵∠CAD=∠FAG=45°,
∴∠CAD-∠FAD=∠FAG-∠FAD,
∴∠CAF=∠DAG,
∴△CAF∽△DAG,
∴
(2).
理由如下:連接
∵正方形是中點,
.
.
.
同理:
又,
.
.
.
.
.
又,
,
又
(3)①結(jié)論不成立.此時.
理由如下:由題可得,
.
又
.
.
連接
,
.
又,
.
②,
理由如下:連接,
∵矩形是中點,
.
.
.
同理:
又 ,
.
.
.
.
.
又,
,
∵,
∴,
∴,
∵AB=CD,
∴,
又,
,
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:
(1)慢車的速度為_____km/h,快車的速度為_____km/h;
(2)解釋圖中點C的實際意義并求出點C的坐標(biāo);
(3)求當(dāng)x為多少時,兩車之間的距離為500km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標(biāo)有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據(jù)兩個小球所標(biāo)金額之和返還相應(yīng)價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:
(1)該顧客至少可得___元購物券,至多可得___元購物券;
(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市以3元/本的價格購進某種筆記本若干,然后以5元/本的價格出售,每天售出20本.通過調(diào)查發(fā)現(xiàn),這種筆記本的售價每降低0.1元,每天可多售出4本,為保證每天至少售出50本,該超市決定降價銷售.
(1)若每本降價元,則每天的銷售量是________本(用含的代數(shù)式表示).
(2)要想每天贏利60元,該超市需將每本的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,是的直徑,是上一點,平分交于,過作于.
(1)求證:與相切;
(2)若,,求的長;
(3)若是中點,過作交于,若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生食堂共有座位個,某天午餐時,食堂中學(xué)生人數(shù)(人)與時間(分鐘)
變化的函數(shù)關(guān)系圖象如圖中的折線.
(1)試分別求出當(dāng)與時,與的函數(shù)關(guān)系式;
(2)已知該校學(xué)生數(shù)有人,考慮到安全因素,學(xué)校決定對剩余名同學(xué)延時用餐,即等食堂空閑座位不少于個時,再通知剩余名同學(xué)用餐.請結(jié)合圖象分析,這名學(xué)生至少要延時多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(1,t+1),B(t-5,-1)兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(c,p)和(n,q)是反比例函數(shù)y=圖象上任意兩點,且滿足c=n+1時,求的值.
(3)若點M(x1,y1)和N(x2,y2)在直線AB(不與A、B重合)上,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知x1<-3,0<x2<1,當(dāng)x1x2=-3時,判斷四邊形NFEM的形狀.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com