【題目】(問題呈現(xiàn))如圖1,在邊長為1的正方形網(wǎng)格中,連接格點(diǎn)D,N和E,C,DN和EC相交于點(diǎn)P,求tan∠CPN的值.
(方法歸納)求一個(gè)銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個(gè)直角三角形.觀察發(fā)現(xiàn)問題中∠CPN不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題,比如連接格點(diǎn)M,N,可得MN∥EC,則∠DNM=∠CPN,連接DM,那么∠CPN就變換到Rt△DMN中.
(問題解決)(1)直接寫出圖1中tan∠CPN的值為 ;
(2)如圖2,在邊長為1的正方形網(wǎng)格中,AN與CM相交于點(diǎn)P,求cos∠CPN的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D是半徑OC上一點(diǎn),且 OD=4.A,B是⊙O上的兩個(gè)動(dòng)點(diǎn),∠ADB=90°,F是AB的中點(diǎn),則OF的長的最大值等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,以C為頂點(diǎn)作等腰直角三角形CMN.使∠CMN=90°,連接BN,射線NM交BC于點(diǎn)D.
(1)如圖1,若點(diǎn)A,M,N在一條直線上,
①求證:BN+CM=AM;
②若AM=4,BN=,求BD的長;
(2)如圖2,若AB=4,CN=2,將△CMN繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中射線NM交AB于點(diǎn)H,當(dāng)三角形DBH是直角三角形時(shí),請你直接寫出CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生準(zhǔn)備購買標(biāo)價(jià)為50元的《現(xiàn)代漢語詞典》,現(xiàn)有甲、乙兩書店出售此書,甲店按如下方法促銷:若只購1本,則按原價(jià)銷售;若一次性購買多于1本,但不多于30本時(shí),每多購一本,售價(jià)在標(biāo)價(jià)的基礎(chǔ)上優(yōu)惠2%(例如買2本,每本售價(jià)優(yōu)惠2%;買三本,每本售價(jià)優(yōu)惠4%,以此類推);若多于30本,每本售價(jià)20元.乙書店一律按標(biāo)價(jià)的6折銷售.
(1)分別寫出在兩書店購買此書總價(jià)y甲、y乙與購書本數(shù)x之間的函數(shù)關(guān)系式;
(2)若這些學(xué)生一次性購買多于30本時(shí),那么去哪家書店購買更劃算,為什么?若要一次性購買不多于30本時(shí),先寫出y(y=y甲﹣y乙)與購買本數(shù)x之間的函數(shù)式,畫出其圖象,再利用函數(shù)圖象分析去哪家書店購買更劃算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計(jì)算結(jié)果精確到1m)(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整:
(1)自變量的取值范圍是全體實(shí)數(shù), 與的幾組對應(yīng)值如下:
其中,________.
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,回答下列問題:
①函數(shù)圖像的對稱性是: .
②當(dāng)時(shí),寫出隨的變化規(guī)律: .
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):方程有________個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對角線AC與BD相交于點(diǎn)O,過點(diǎn)O作OE⊥AD于點(diǎn)E,若AB=4,∠ABC=60°,則OE的長是( 。
A.B.2C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AO=BO=50cm,OC是一條射線,OC⊥AB,一只螞蟻由A以2cm/s的速度向B爬行;同時(shí)另一只螞蟻由O點(diǎn)以3cm/s的速度沿OC方向爬行.問:是否存在這樣的時(shí)刻,使兩只小螞蟻與點(diǎn)O點(diǎn)組成的三角形面積為450cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點(diǎn)D,E分別是邊BC,AC上的動(dòng)點(diǎn),則DA+DE的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com