【題目】如圖,已知△ABC為等腰直角三角形,D為斜邊AB上任意一點(diǎn),(不與點(diǎn)A、B重合),連接CD,作EC⊥DC,且EC=DC,連接AE,則∠EAC為_______________度.
【答案】45
【解析】
由等腰直角三角形ABC的兩腰相等的性質(zhì)推知AC=CB,再根據(jù)已知條件“∠ACB=∠DCE=90°”求得∠ACE=90°-∠ACD=∠DCB,然后再加上已知條件DC=EC,可以根據(jù)全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的對(duì)應(yīng)角相等的性質(zhì)證明結(jié)論即可.
∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=CB.
∵∠ACB=∠DCE=90°,
∴∠ACE=90°-∠ACD=∠DCB.
在△ACE和△BCD中,
,
∴△ACE≌△BCD(SAS).
∴∠B=∠EAC(全等三角形的對(duì)應(yīng)角相等).
∵∠B=45°,
∴∠EAC=45°.
故答案為45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠BAC=30°,點(diǎn) D 是 BC 邊上的點(diǎn),AB=18,將△ABC 沿直線 AD 翻折,使點(diǎn) C 落在 AB 邊上的點(diǎn) E 處,若點(diǎn) P 是直線 AD 上的動(dòng)點(diǎn),則 BP+EP 的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過(guò)的路程相等,設(shè)BD為xm.
(1)請(qǐng)用含有x的整式表示線段AD的長(zhǎng)為______m;
(2)求這棵樹高有多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角坐標(biāo)系xoy中,直線l:y=kx+b交x軸,y軸于點(diǎn)E,F(xiàn),點(diǎn)B的坐標(biāo)是(2,2),過(guò)點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動(dòng)點(diǎn),以BD為對(duì)稱軸,作與△BCD或軸對(duì)稱的△BC′D.
(1)當(dāng)∠CBD=15°時(shí),求點(diǎn)C′的坐標(biāo).
(2)當(dāng)圖1中的直線l經(jīng)過(guò)點(diǎn)A,且k=﹣ 時(shí)(如圖2),求點(diǎn)D由C到O的運(yùn)動(dòng)過(guò)程中,線段BC′掃過(guò)的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過(guò)點(diǎn)D,C′時(shí)(如圖3),以DE為對(duì)稱軸,作于△DOE或軸對(duì)稱的△DO′E,連結(jié)O′C,O′O,問(wèn)是否存在點(diǎn)D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tan∠OAC= .
(1)求拋物線的解析式;
(2)點(diǎn)H是線段AC上任意一點(diǎn),過(guò)H作直線HN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;
(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對(duì)稱軸上?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為6,面積是18,腰AB的垂直平分線EF分別交AC、AB邊于E、F點(diǎn).若點(diǎn)O為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BOM周長(zhǎng)的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P1、P2是反比例函數(shù)y= (k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo).
②根據(jù)圖象直接寫出在第一象限內(nèi)當(dāng)x滿足什么條件時(shí),經(jīng)過(guò)點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com