已知拋物線經(jīng)過點(diǎn)A(4,0).設(shè)點(diǎn)C(1,-3),請?jiān)趻佄锞的對稱軸上確定一點(diǎn)D,使得|AD-CD|的值最大,則D點(diǎn)的坐標(biāo)為   
【答案】分析:首先利用待定系數(shù)法求得拋物線的解析式,然后可求得拋物線的對稱軸方程x=2,又由作點(diǎn)C關(guān)于x=2的對稱點(diǎn)C′,直線AC′與x=2的交點(diǎn)即為D,求得直線AC′的解析式,即可求得答案.
解答:解:∵拋物線經(jīng)過點(diǎn)A(4,0),
×42+4b=0,
∴b=-2,
∴拋物線的解析式為:y=x2-2x=(x-2)2-2,
∴拋物線的對稱軸為x=2,
∵點(diǎn)C(1,-3),
∴作點(diǎn)C關(guān)于x=2的對稱點(diǎn)C′(3,-3),
直線AC′與x=2的交點(diǎn)即為D,
因?yàn)槿我馊∫稽c(diǎn)D(AC與對稱軸的交點(diǎn)除外)都可以構(gòu)成一個(gè)△ADC.而在三角形中,兩邊之差小于第三邊,即|AD-CD|<AC.所以最大值就是在D是AC′延長線上的點(diǎn)的時(shí)候取到|AD-C′D|=AC′.把A,C′兩點(diǎn)坐標(biāo)代入,得到過AC′的直線的解析式即可;
設(shè)直線AC′的解析式為y=kx+b,

解得:,
∴直線AC′的解析式為y=3x-12,
當(dāng)x=2時(shí),y=-6,
∴D點(diǎn)的坐標(biāo)為(2,-6).
故答案為:(2,-6).
點(diǎn)評:此題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的對稱軸,以及距離差最小問題.此題綜合性很強(qiáng),解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(diǎn)(1,5)和(3,5),則拋物線的對稱軸為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知拋物線經(jīng)過點(diǎn)A(-1,5),B(5,5),C(1,9),則該拋物線上縱坐標(biāo)為9的另一點(diǎn)的坐標(biāo)是
(3,9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線經(jīng)過點(diǎn)A(1,0)、B(3,0)、C(0,3),以AB為直徑畫圓.
(1)求此拋物線的解析式;
(2)求該圓與拋物線交點(diǎn)(除A、B外)坐標(biāo);
(3)以AB的中點(diǎn)O′為圓心畫圓,該圓的半徑r與此拋物線的交點(diǎn)個(gè)數(shù)有何關(guān)系(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線經(jīng)過點(diǎn)A(-3,0),B(0,3),C(2,0)三點(diǎn).
(1)求此拋物線的解析式;
(2)如果點(diǎn)D(1,m)在這條拋物線上,求m的值的點(diǎn)D關(guān)于這條拋物線對稱軸的對稱點(diǎn)E的坐標(biāo),并求出tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),拋物線對稱軸l與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對稱軸;
(2)點(diǎn)P在拋物線上,且以A、O、M、P為頂點(diǎn)的四邊形四條邊的長度為四個(gè)連續(xù)的正整數(shù),請你直接寫出點(diǎn)P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請你求出點(diǎn)N的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案