【題目】計(jì)算﹣3a2×a3的結(jié)果為( 。
A.﹣3a5
B.3a6
C.﹣3a6
D.3a5

【答案】A
【解析】解:﹣3a2×a3=﹣3a2+3=﹣3a5 , 故選A.
【考點(diǎn)精析】本題主要考查了單項(xiàng)式乘單項(xiàng)式的相關(guān)知識(shí)點(diǎn),需要掌握單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣1,2)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)在( 。

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了追求更合適的出行體驗(yàn),利用網(wǎng)絡(luò)呼叫專(zhuān)車(chē)的打車(chē)方式受到大眾歡迎.據(jù)了解在非高峰期時(shí),某種專(zhuān)車(chē)所收取的費(fèi)用(元)與行駛里程 的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖象解答下列問(wèn)題:

)求之間的函數(shù)關(guān)系式.

)若專(zhuān)車(chē)低還行駛(時(shí)速),每分鐘另加元的低速費(fèi)(不足分鐘的部分按分鐘計(jì)算).某乘客有一次在非高峰期乘坐專(zhuān)車(chē),途中低速行駛了分鐘,共付費(fèi)元,求這位乘客坐專(zhuān)車(chē)的行駛里程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖8,四邊形ABEG、GEFH、HFCD都是邊長(zhǎng)為1的正方形.

(1)求證:△AEF∽△CEA

(2)求證:∠AFB+∠ACB=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OA、OB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長(zhǎng);

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價(jià)分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿(mǎn)儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在ABCADE中,AB=AC,AD=AE,BAC=DAE,連接BDCE,BDCE相交于點(diǎn)F,若ABC不動(dòng),將ADE繞點(diǎn)A任意旋轉(zhuǎn)一個(gè)角度.

1)求證:BAD≌△CAE

2)如圖①,若∠BAC=DAE=90°,判斷線段BDCE的關(guān)系,并說(shuō)明理由;

3)如圖②,若∠BAC=DAE=60°,求∠BFC的度數(shù);

4)如圖③,若∠BAC=DAE= ,直接寫(xiě)出∠BFC的度數(shù)(不需說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】尺規(guī)作圖:某學(xué)校正在進(jìn)行校園環(huán)境的改造工程設(shè)計(jì),準(zhǔn)備在校內(nèi)一塊四邊形花壇內(nèi)栽上一棵桂花樹(shù).如圖,要求桂花樹(shù)的位置(視為點(diǎn)P),到花壇的兩邊ABBC的距離相等,并且點(diǎn)P到點(diǎn)AD的距離也相等.請(qǐng)用尺規(guī)作圖作出栽種桂花樹(shù)的位置點(diǎn)P(不寫(xiě)作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交ABE、ACD,連接BD

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數(shù);

(2)若ABAC,且△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫(xiě)出AB+ACAE之間的等量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案